PPRuNe Forums

PPRuNe Forums (https://www.pprune.org/)
-   Rotorheads (https://www.pprune.org/rotorheads-23/)
-   -   Electric tail rotor; an alternative? (https://www.pprune.org/rotorheads/615965-electric-tail-rotor-alternative.html)

gevans35 1st Dec 2018 23:37

Some interesting reading.

Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports.
https://ntrs.nasa.gov/archive/nasa/c...0180000361.pdf

GRC3: Integration of Innovative Electrical Systems for Rotorcraft (pages 12 & 13)
http://cleansky.eu/sites/default/fil...eport_2015.pdf

But are helicopters the future?
http://evtol.news

Upcoming lecture by Nick Lappos.
https://vtol.org/news/lappos-selecte...olsky-lecturer
.

tigerfish 1st Dec 2018 23:37

Sadly TC, as so often is the case, this forum has been invaded by many armchair flyers who have no idea about actual operational Air operations . Best leave to their playtime air ops games!

TF

dClbydalpha 2nd Dec 2018 00:02


Originally Posted by tigerfish (Post 10325767)
Sadly TC, as so often is the case, this forum has been invaded by many armchair flyers who have no idea about actual operational Air operations . Best leave to their playtime air ops games!

TF

Or those who have no idea how these magnificent flying machines are designed or certified.

Nadar 2nd Dec 2018 00:22

Just to make it clear, my comment about autorotation was with the assumption that the generator would then be dead, and putting enough heavy and possibly explosive batteries in a helicopter to have that as a backup doesn't seem remotely realistic to me. I didn't think of that the gearbox could drive the generator, which I realize now would be the only sensible thing to do.

The autorotation comment was just meant as an example of new problems that would arise with such a "hybrid" system. I still think the main points are that I can't imagine that such a system as a total would be as reliable as a driveshaft and a gearbox, and that it would be much less efficient. I could be wrong, but I still have a hard time seriously thinking of electrifying the TR to reduce the risk of failure.

RVDT 2nd Dec 2018 00:43


You do know you can autorotate with or without a working tail rotor right?
Very true except the levels of controllability will be different - there is a certain amount of drag within the drivetrain and auxiliary systems (HYD pumps, cooling fans, sometimes generators or alternators etc ) that are driven that will induce the cab to catch up with the main rotor. Also noticeable when you flare to prior to touchdown. Without a TR it will be a bit messy.

Robbiee 2nd Dec 2018 02:56


cattletruck 2nd Dec 2018 04:13

Suppose you have to hover next to a cliff or hangar with some serious crosswind. Consider the following:
Is a fixed pitch variable speed electric motor dynamic enough to hold the tail steady? What about tail rotor rpm wind down when the gusts abate, do you need tail rotor brakes?
Perhaps variable pitch constant speed is the better electric option of the two. Now how do you manage power available on two different systems. Will the electric motor run out of puff while the coal burners are just warming up? Are bigger electric motors needed along with all the penalties that introduces?

Some of us like to roll the helicopter in tiny amounts just using the pedals, will the electric fan at the back take this away from us?

Now if you are gunna stick an electric fan at the back at least allow it to pivot around 90 degrees to provide forward thrust.

GrayHorizonsHeli 2nd Dec 2018 08:34


Originally Posted by dClbydalpha (Post 10325741)
How much did you pay for it? What kind of certification did you get with it?


I overpayed obviously. I thought Walmart had the best price, but then I found it at Best Buy for less. #rippedoff
there was a sticker inside the airframe. Mostly in Chinese that had Insp.45 on it. I assume this was the manufacturer QA inspector. I bet he knows his stuff.
the things I learned on this thing would shame Chuck Aaron and his 105. He's got nothing on me.

gevans35 2nd Dec 2018 08:41

First they ignore you, then they laugh at you, then they fight you, then you win.

Mahatma Gandhi

timprice 2nd Dec 2018 08:53

I like this idea, main problem I can see is the tail rotor will have to keep spinning in flight otherwise there could be damage to the tail rotor blades or mechanism during start up and slow down.
Perhaps a ducted one would be superior????:rolleyes:

chopjock 2nd Dec 2018 12:02


Originally Posted by timprice (Post 10325970)
I like this idea, main problem I can see is the tail rotor will have to keep spinning in flight otherwise there could be damage to the tail rotor blades or mechanism during start up and slow down.
Perhaps a ducted one would be superior????:rolleyes:

Could be designed to windmill as a generator perhaps?

Hughes500 2nd Dec 2018 12:24

if these things that might appear ludicrous aren't looked at then nothing goes forward. I remember my basic rotary wing instructor at Wallop told me ( he started as a Sycamore pilot ) that they thought it was impossible to put a gas turbine in a helicopter when he started in the 1950's. That idea was obviously a non starter as well

Pilot DAR 2nd Dec 2018 12:30


The assumption that a motor would be as heavy as a TGB, IGB, MGB tail pickoff and driveshaft is not one that I would make.
I'd like to see the weights. I'm imagining a pretty heavy motor, compared to the present drivetrain, plus the need for either a heavy generator, or batteries, and some heavy wire. By placing the heavy motor at the end of the tailboom, the tailboom will have to be made much more strong, thus heavy itself, and that will create an undesirable mass distribution for the whole fuselage. The available torque of a motor to drive an effective tail rotor would have to be immense to accelerate the tail rotor RPM commensurate with the pilot's possible sudden application of lots of pedal. For aircraft which carry batteries as a power source to replace fuel, a disadvantage is that when the batteries become discharged, they don't weigh any less. The component and control for electric motors would have to satisfy a evaluation of reliability to the standards of 27/29.1301 and 1309, which is daunting.

I am a helicopter pilot, and have undertaken design studies for an electric powered Cessna 172 STC (program may continue) and an electric powered R22 (program will not continue). Electric power in aviation has a bright future, in a rather narrow band of application, which I opine does not include helicopters in the foreseeable future.

dClbydalpha 2nd Dec 2018 12:34

Let's not get too ambitious. Simply replacing the mechanical drive gives enough options for now.

If we're blue sky thinking I'd look at a ducted fan that could rotate to become a pusher.

gevans35 2nd Dec 2018 12:47


Originally Posted by Pilot DAR (Post 10326133)
Electric power in aviation has a bright future, in a rather narrow band of application, which I opine does not include helicopters in the foreseeable future.

I would agree with you if it's pure electric power, but a hybrid VTOL aircraft powered by electric motors, with a battery or capacitors, replenished by a gas turbine or diesel generator, may be viable in the not to distant future?

Edit: Here's an example...
https://newatlas.com/rolls-royce-evtol-air-taxi/55466/
.

dClbydalpha 2nd Dec 2018 12:49


Originally Posted by Pilot DAR (Post 10326133)
... which I opine does not include helicopters in the foreseeable future.

That depends on the advantages gained, I personally think that an ETR brings a lot to the table in terms of efficiency and noise.

Motors, generators and actuators are already used, so we know how to design for certification, nothing daunting there.

As has been pointed out previously the technology is already here. It's simply about the investment.

Uplinker 2nd Dec 2018 13:16


  • I'm sure there's a lot of computer control in most modern helicopters already, but this would have to be entirely computer controlled to be at all flyable. That would open up a new can of worms when it comes to safety. I know that "fly-by-wire" is popular these days, but personally I only consider it "safe" as long as everybody is equipped with ejection seats.
I don’t accept your first premise - an electrically driven tail rotor, (whether feasible or not), could still be manually controlled.

As to fly-by-wire; so I take it that you don’t fly on any Airbus and only on some Boeings and turbo-props?

Airbus 320 family and 330 each have 5 FBW computers, and can remain flying aloft without any of them.

PS: can helicopters have ejection seats ??

Washeduprotorgypsy 2nd Dec 2018 13:19

PIlot DAR,

I am curious to know the weight and horsepower of an electric motor suited to a Cessna 172 retrofit.

CAn you give us a ballpark range?

GrayHorizonsHeli 2nd Dec 2018 17:21

I vote for ion propulsion. It's way cooler.
imagine the 505 as the launch model? Damn conflicted feelings there. Butt ugly but cool.

GrayHorizonsHeli 2nd Dec 2018 17:24


Originally Posted by Washeduprotorgypsy (Post 10326168)
PIlot DAR,

I am curious to know the weight and horsepower of an electric motor suited to a Cessna 172 retrofit.

CAn you give us a ballpark range?

google helped me find this:
https://www.flyingmag.com/news/two-place-electric-cessna-172-skyhawk

krypton_john 2nd Dec 2018 20:13


Originally Posted by dClbydalpha (Post 10325366)
Same is true of engines, fuel, hydraulics, gearboxes etc. hence the need for safety critical design.

The big problem I see is that in autorotation the main rotor still drives the tail rotor in perfect synchronisation. That won't work for an electric driven TR.

Pilot DAR 2nd Dec 2018 22:16


Motors, generators and actuators are already used, so we know how to design for certification, nothing daunting there.
As has been pointed out previously the technology is already here. It's simply about the investment.
I agree that we're getting there, in terms of fly by wire, and criticality of electric components. However, when an electric motor replaces the very commonly accepted tail rotor driveshaft and gearboxes, the criticality will be perceived at a higher level. Let alone the unusual method of control (if it's even practical), the reliability of the motor system will have to be demonstrated to a new level. Such a design initiative will be labeled as novel and unusual, and held to an unusually vigorous standard. The present motors and generators (FBW notwithstanding) are certified as secondary systems whose failure can be managed by procedure. I perceive that investors would ask why they should invest an immense amount of money to certify a novel system which really only trades known and understood problems for unknown problems, without really solving any problems.

The project I was hired to advance toward certification for a motor powered 172 considered a purpose built 150HP electric motor. Though I saw designs and detailed drawings, the project never got to the point of producing a motor for installation (they took a lot of measurements though!). It was to be about 10% heavier than the Lycoming O-320 it would replace. The battery pack was a bit more of a challenge, though not insurmountable. Certification had a path forward with the authority, I had a number of discussions as to the proposed certification basis, and general agreement. That was doable - but it was a single engine airplane, where the failure mode was no worse (and really not much different) that the original design. I am confident this will happen for airplanes, it just requires a meeting of battery capacity, and airplane utility. It costs too much to keep a training airplane offline for hours to recharge it, and changing out very heavy batteries discharged for charged is problematic. During the planning of the 172 project, I did tell my client that they should install the motor as the primary power source in an R22, and not carry batteries, just a long power cord to the corner of the apron. Of course, you couldn't fly the R22 anywhere that way, but we spend a lot of time simply practicing hovering, so it could simply be a hovering trainer, which never gets higher than ten feet, nor leaves the apron. People liked the concept, but we did not get that far. Someone will.....

In the mean time, I'm very comfortable with shaft driven tail rotors/fans, we have more pressing product improvements to work on.

chopjock 2nd Dec 2018 22:26

P D

Let alone the unusual method of control (if it's even practical)
KISS Just on or off constant rpm with a servo controlled FBW variable pitch rotor should do it.

hoodie 2nd Dec 2018 22:54


Originally Posted by chopjock (Post 10326468)
KISS Just on or off constant rpm with a servo controlled FBW variable pitch rotor should do it.

The word "just" is doing a heck of a lot of work in that sentence.

I don't think you understand the complexities inherent in a "FBW variable pitch rotor", of which only one - but a big one - is safety critical software and electronic hardware.

chopjock 2nd Dec 2018 22:59


Originally Posted by hoodie (Post 10326476)
The word "just" is doing a heck of a lot of work in that sentence.

I don't think you understand the complexities inherent in a "FBW variable pitch rotor", of which only one - but a big one - is safety critical software and electronic hardware.

Ok perhaps "just" a pushrod then...

Pilot DAR 3rd Dec 2018 00:06


Just on or off constant rpm with a servo controlled FBW variable pitch rotor should do it.
Or a constant (to the main transmission) RPM, pilot controlled (pushrod, no FBW) variable pitch rotor - even more simple!

Yeah, that word "just"... It always makes my ears perk up when it's not accompanied with a comprehensive plan for certification. That's because I'm one of the people who may be asked to sign a certificate approving it later, and that does not happen lightly! It's great to innovate and aspire to new technology. But when doing that pushes the thinking of aircraft certification, it's a long and expensive process of demonstration of design compliance - or worse, petitioning for a change in the design standards to enable certification of an aircraft with novel features. The Bell XV-15 was the poster child for having to evolve design standards which were outside the box, and that is still a driveshaft type design!

abgd 3rd Dec 2018 01:00

It may not be the daftest idea. A quick google throws up this:

Helicopter Electric Tail Rotor

Motors for model aircraft will often manage about 6-7 horsepower/Kg so if an R22 has a 120hP engine you might want a 30 horsepower motor - so 6kg for the motor and 6kg for the generator and a kilo or two for the control electronics. You would considerably simplify the gearbox and be able to do without an alternator. You might want to play with adding a small battery - large enough to transition from forward flight to the hover, then land, for added reliability and perhaps to give a little extra oomph for take off. On the back of an envelope it's feasible.

If you wanted to use fixed pitch tailrotors to reduce mechanical complexity you'd have to make them small and light in order to be responsive enough so you may wish to use several small rotors rather than one large one.

However even in electric radio controlled helicopters it's normal to link the main rotor and tail rotor mechanically and separate motors are only rarely used. The exception would be for very small models with constant pitch tail rotors where the complexity of making tiny variable pitch rotors would be prohibitive.

chopjock 3rd Dec 2018 09:16

PD

Or a constant (to the main transmission) RPM, pilot controlled (pushrod, no FBW) variable pitch rotor - even more simple!
I understand exactly. However in the current situation there is no option to disconnect drive in event of stuck / full un commanded pedal. An electric option could do this.

Pilot DAR 3rd Dec 2018 11:50


However in the current situation there is no option to disconnect drive in event of stuck / full un commanded pedal.
Funny this should come up. During my training, I asked my instructor how often a helicopter suffered a stuck pedal. He said he'd never heard of it in 21,000 hours of his flying. I asked then why so much focus on yaw control failures. He said he'd asked the same question during instructor training, and why no training for stuck cyclic or collective (also apparently extremely rare. There was no good answer to the question. The stuck pedal training seems a solutions looking for a problem. It's fun training though! 'Builds skills!

So now we introduce a tail rotor emergency turn off switch (guarded, I hope). What if a spinning pilot cannot reach it? What if it suffers unintended operation? 'Seems to introduce more failure modes than it solves!

dClbydalpha 3rd Dec 2018 12:26


Originally Posted by krypton_john (Post 10326408)
The big problem I see is that in autorotation the main rotor still drives the tail rotor in perfect synchronisation. That won't work for an electric driven TR.

Firstly, why wouldn't it work for an ETR?
Secondly, why do you want the tail rotor driven in "perfect synchronisation" with the main rotor?

419 3rd Dec 2018 12:46

I think that the obvious question to ask is:
If an electrically driven tail rotor could be made as reliable as a shaft driven one and it was around about the same price, same weight and had benefits such as lower maintenance costs, why isn't such a system in use already?

dClbydalpha 3rd Dec 2018 12:47


Originally Posted by Pilot DAR (Post 10326497)
... But when doing that pushes the thinking of aircraft certification ...

That's exactly what is being asked by the authorities. As well as a strive for efficiency, the push to an ETR is environmental. It can make an impact on the noise footprint, critical in approving modern air operations.

There are already electric motors and actuators on the critical parts list, you can't choose to ignore all the FBW advancements and the lessons learned. We know how to design, build and certify using redundant feeds and multiple wingdings isolated electrically and thermally. It is not a big step in to the unknown ... not saying it is cheap, but if the regulations allow for a competitive advantage to be gained then the business case will follow. I am most definitely not advocating using RPM alone or stopping the TR in flight. But changing RPM allows optimisation to particular phases of flight.

Thanks for sharing the weight estimate. I came up with a similar %delta for the ETR. The motor about 25kg, the feeds another 10kg and the generator 40kg. So 75kg replacing about 65kg. So a weight gain, but I am convinced that the MGB could be further simplified and you have greater choice over where the generator is placed.

Lonewolf_50 3rd Dec 2018 16:53


Originally Posted by Pilot DAR (Post 10326813)
Funny this should come up. During my training, I asked my instructor how often a helicopter suffered a stuck pedal. He said he'd never heard of it in 21,000 hours of his flying. I asked then why so much focus on yaw control failures. He said he'd asked the same question during instructor training, and why no training for stuck cyclic or collective (also apparently extremely rare. There was no good answer to the question. The stuck pedal training seems a solutions looking for a problem. It's fun training though! 'Builds skills!

Not quite.
When you are dealing with servos and hydraulic fluids some odd things can happen.
For example, on the UH-60 Black Hawk there is a cable/pulley/spring tensioning lash up in the Tail Rotor Servo Assembly that, if it fails, leads the TR Blades to neutral pitch. (I read up on a rare case of this occurring a few years ago. The commentary from the Blackhawk experts did note that it was very rare, and an internal bit failed ...). I am trying to recall if there was a tail servo hardover in a Seahawk back in the distant past that led to a "stuck pedals" approach ... but memory is fading there.

There were some mechanical conditions I vaguely recall that would lead to flat pitch or stuck pitch in the Huey ages ago when I went through flight training (TH-1E and TH-1L models, I don't have the manuals for them anymore).
It may be that your instructor was being "model specific" in his observations.

dClbydalpha 3rd Dec 2018 17:17


Originally Posted by 419 (Post 10326847)
I think that the obvious question to ask is:
If an electrically driven tail rotor could be made as reliable as a shaft driven one and it was around about the same price, same weight and had benefits such as lower maintenance costs, why isn't such a system in use already?

The simple answer is the advances in technology driven by the hybrid and electric vehicle markets over the past decade now make production of such a system feasible. The operational environment is changing which may make it attractive to the market place. Hence the new interest and why a system has been ground tested.


Originally Posted by Pilot DAR (Post 10326813)
... I asked then why so much focus on yaw control failures. He said he'd asked the same question during instructor training, and why no training for stuck cyclic or collective (also apparently extremely rare. There was no good answer to the question...

I'm not sure how you'd train to cope with anything that causes a stuck main rotor actuator.


Originally Posted by Lonewolf_50 (Post 10327012)
...
There were some mechanical conditions I vaguely recall that would lead to flat pitch or stuck pitch ...

Control rod failure is one that immediately comes to mind.

gevans35 3rd Dec 2018 17:31


I'm not sure how you'd train to cope with anything that causes a stuck main rotor actuator.
Stuck collective is manageable , depending on position, cyclic less so.

JohnDixson 3rd Dec 2018 17:36

Lonewolf, I suspect that there is some misinformation out there, as the tail rotor control quadrant basic design purpose in life not as you described. Rather, that quadrant and associated large spring is designed to address the loss of a cable side to ballistic damage od maintenance error. As long as one cable remains intact, the pilot flies the remaining cable against the spring and almost 100% authority is retained. What you referred to was that the basic tail rotor assembly is two, crosswise mounted paddles with four blades, and the built-in blade angles are set up to generally match the tail rotor requirements between 40 and 120 or 130 ( can't remember now ) KIAS with reasonable sideslip, as in where one might be if all the tail hydraulics were lost. That situation was flown ( both stages of the TR servo depressurized ) and we were almost able ( in this failure mode one would still have the yaw boost servo which is up forward ) to get back to a hover but could not stop the right yaw drift below 10-15 kts.

Lonewolf_50 3rd Dec 2018 17:52


Originally Posted by JohnDixson (Post 10327047)
Lonewolf, I suspect that there is some misinformation out there,

More like bad memory.
Yes, your point on the neutral position is part of what I was trying to get at.
I was trying to describe the TR servo assembly. Failure there, not just a cable failure, would render any inputs moot I think. The tail quadrant caution light would illuminate if one of the two failed. (there are 1st stage and 2d stage) Not, as noted, a common problem.
As you describe it, yes, 40 and 120 ring a bell. (I seem to recall that as the number in the NATOPS).
The recent failure I tried to describe was a failure inside the servo assembly itself, actually, the quadrant, on the ground, so they never got into a hover. Physical failure. There's a point around which it all pivots, on which the cable guards are mounted. I need to go back and see if I can find notes on that. Will post if I can find them. I think it was that sleeve/post that failed.
As I remember that system, John, without hydraulics you can't move the paddles. Your point on the servos triggers some old memory.
If you lose hydraulics in that channel, I don't recall that you can move the paddles without boost.
But now I need to go and look at the old NATOPS systems diagrams. I am pretty sure that in that flight control, the Blackhawk and Seahawk are alike enough. No CILA, though, in the Black Hawk.
As to the training, you guys were test pilots.
What they didn't want people doing, operationally, was coming into a hover with inability to control the nose, and not having the tail authority to control the aircraft down close to the ground. The run on / stuck pedals approach was considered lower risk, as well as the benefit of letting the cross wind assist in holding the nose position as one got close to the ground so you could get slower before touchdown.

I guess my point, badly made, was that you need to know the specific failures that will leave you with loss of controlability even if you don't have loss of drive/thrust. Each model will have its own quirks. The blythe "we only do it because it's fun training" I don't think is a responsible position to take.

JohnDixson 3rd Dec 2018 19:06

A design function that the Hawks have is a backup ( #3 ) hydraulic pump that is electrically driven, and is the same as the two primary pumps in flow/pressure capability, and this pump backs up the first stage pump pressure to the TR servo 1st stage, hence there is triple redundancy, source-wise for hydraulic pressure back at the TR servo.

As to your remark about doing it because its fun training is well taken here, as it was possible ( or at least used to be ) to depressurize both tail rotor servo stages by pulling the backup pump c/b, deselecting the #1 Primary servo and selecting the tail rotor LDI switch. . At least I think that was the sequence. It did succeed in depressurizing both stages as we intended. Anyhow, after that flight there was some reconsideration by the senior mechanical controls engineers, who were concerned that a switch back to a pressurized system with a bunch of pedal force being applied, would create a cable whiplash that might result in the cable coming off the intermediate cable attachment devices. Hence your point is very good advice.

krypton_john 3rd Dec 2018 21:46


Originally Posted by dClbydalpha (Post 10326838)
Firstly, why wouldn't it work for an ETR?
Secondly, why do you want the tail rotor driven in "perfect synchronisation" with the main rotor?

First: With engine out what's generating sufficient energy to drive the TR?

Second: To keep the TR in the correct RPM range.

chopjock 3rd Dec 2018 22:24


Originally Posted by krypton_john (Post 10327212)
First: With engine out what's generating sufficient energy to drive the TR?

How long does an autorotation take? A couple of minutes perhaps? So not a very large capacity required then.


Second: To keep the TR in the correct RPM range.
Or drive the generator from the transmission...


All times are GMT. The time now is 07:32.


Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.