Go Back  PPRuNe Forums > Flight Deck Forums > Tech Log
Reload this Page >

Jet engine air intake

Wikiposts
Search
Tech Log The very best in practical technical discussion on the web

Jet engine air intake

Thread Tools
 
Search this Thread
 
Old 30th Sep 2009, 18:55
  #1 (permalink)  
Thread Starter
 
Join Date: Jan 2006
Location: Between a rock and a hard place
Posts: 1,267
Likes: 0
Received 0 Likes on 0 Posts
Jet engine air intake

Tried to search the subject before, but couldn't find any thread that really answered my question. It is relative simple, maybe better suited in the Engineers section, but I give it a try!!

Assuming subsonic aeroplanes, as far as I've read through litterature the engine intake is "usually designed divergent" to allow for reduced velocity at the compreesor face. Is this generally the design, on let's say a CFM56 or JT9? Being up in Victorville the other day, having the possibility to drool over some fancy aircraft compared to my Duchess, I couldn't say the intake looked divergent to me on A320, MD80, B737.

Anyone knows, from testing or calculation, what is a typical velocity the air enters the compressor face?? I seem to recall from my ATPL-theory M0.5, but are modern engines with VIGV able to cope with higher velocities than that? Is there any advantage/disadvantage with having high/low velocity to the compressor, considering ram pressure recovery perhaps?

Thanks in advance!!
172_driver is offline  
Old 1st Oct 2009, 00:23
  #2 (permalink)  
 
Join Date: Jan 2008
Location: Herts, UK
Posts: 748
Likes: 0
Received 0 Likes on 0 Posts
Yes, they're divergent. The normal assumption is that all the dynamic head is converted to pressure at the compressor face (fan face in a turbofan) and then that first stage compresses further.
This means that the engine experiences a Momentum Drag equivalent to the nacelle intake area x density x free-stream velocity (a/c speed)
This is subtracted from the gross thrust, which is why the nett thrust of a big fan drops off with speed much faster than a turbojet.
A high speed at the first-stage face (or fan face) would seriously compromise the fan blade design, due to shocks or excessive Mach drag, as well as noise.
HarryMann is offline  
Old 1st Oct 2009, 12:08
  #3 (permalink)  
 
Join Date: Feb 2005
Location: flyover country USA
Age: 82
Posts: 4,579
Likes: 0
Received 0 Likes on 0 Posts
Said divergent design of course may compromise the takeoff performance a bit, and so many early jets had auxillary "blow-in" (or "suck-in") doors to provide more airflow at low IAS.

Examples are the JT3D 707's, early 747-100's, the C-5A/B, T-33 etc. They were terrific noise generators, too.
barit1 is offline  
Old 3rd Oct 2009, 03:58
  #4 (permalink)  
Thread Starter
 
Join Date: Jan 2006
Location: Between a rock and a hard place
Posts: 1,267
Likes: 0
Received 0 Likes on 0 Posts
Thanks for that! While increasing the momentum drag, the "ram pressure recovery effect" does increase the thrust as well at higher speeds, doesn't it? 1) Off-loads compressor and 2) increases mass flow? I suspect the advantages are higher for turbojets though.
172_driver is offline  
Old 3rd Oct 2009, 12:58
  #5 (permalink)  
 
Join Date: Feb 2005
Location: flyover country USA
Age: 82
Posts: 4,579
Likes: 0
Received 0 Likes on 0 Posts
Strictly speaking, it doesn't "Off-load" the compressor, but it increases the static pressure at the compressor inlet and thus increases air density and mass flow of the working fluid (ie air). Thus the whole gas turbine cycle is boosted.
barit1 is offline  
Old 3rd Oct 2009, 13:36
  #6 (permalink)  
 
Join Date: Jan 2009
Location: Sin City
Posts: 279
Likes: 0
Received 0 Likes on 0 Posts
They are divergent, taking advantage of Bernoulli's theorem which is, speed goes down, pressure goes up. As mentioned, this intake also has the effect of slowing down the airspeed for the compressor to handle.
leewan is offline  
Old 4th Oct 2009, 06:55
  #7 (permalink)  
Thread Starter
 
Join Date: Jan 2006
Location: Between a rock and a hard place
Posts: 1,267
Likes: 0
Received 0 Likes on 0 Posts
Guess I have to look closer next time... but I believe you they are divergent

Off-load was wrong word, perhaps, what I meant simply that the ram recovery pressure increases the inlet pressure to the compressor and part of the job is already made.
172_driver is offline  
Old 4th Oct 2009, 15:50
  #8 (permalink)  
 
Join Date: Feb 2005
Location: flyover country USA
Age: 82
Posts: 4,579
Likes: 0
Received 0 Likes on 0 Posts
...part of the job is already made.
Well, no; The increased mass flow permits the engine to do MORE work. Pressures thoughout the engine are higher, not merely the same.
barit1 is offline  
Old 4th Oct 2009, 16:06
  #9 (permalink)  
 
Join Date: Oct 2008
Location: Above & Beyond
Posts: 322
Likes: 0
Received 0 Likes on 0 Posts
High by pass engines usually use a pitot type inlet. If you look at a jet engine from the side you will see that the inlet is slightly divergent, the advantage of this is the fact that it decreases the ram velocity and increases the pressure.
punk666 is offline  
Old 7th Oct 2009, 11:44
  #10 (permalink)  
 
Join Date: Jan 2008
Location: Herts, UK
Posts: 748
Likes: 0
Received 0 Likes on 0 Posts
punk666

That is what we said above, and it applies to all types, not just high-bypass..

172driver
I suspect the advantages are higher for turbojets though.

Again, yes, what was said above*, there is an increasing divergence between pure-jet and by-pass jet net thrust as speeds approach the transonic regime. Clever inlet & first stage design has however, allowed an increasing by-pass ratio to be used at transonic and supersonic speeds with lower penalties.

* Momentum drag is very large effect, pressure recovery less

Yes, blow-in doors for low speed mass flow increase. Also spill-doors for excess mass-flow (surge conditions) can/have been incorporated, sometimes the two combined possibly
HarryMann is offline  
Old 7th Oct 2009, 12:18
  #11 (permalink)  
 
Join Date: Mar 2002
Location: Florida
Posts: 4,569
Likes: 0
Received 1 Like on 1 Post
* Momentum drag is very large effect, pressure recovery less

..... Also spill-doors for excess mass-flow (surge conditions) can/have been incorporated, sometimes the two combined possibly
I suspect that with very high bypass inlets that the drag increase of a surge condition at early climb power could result in very high drag conditions on one side for several seconds coupled with the loss of thrust. Then again the inlet spillage effect would wash over the wing surfaces hopefully with not the same detrimental effect as an inflight reverser deployment.
lomapaseo is offline  
Old 7th Oct 2009, 23:59
  #12 (permalink)  
 
Join Date: Jan 2008
Location: Herts, UK
Posts: 748
Likes: 0
Received 0 Likes on 0 Posts
You at the least have most of the momentum drag without the thrust! As you say, there are probably some secondary effects from spillage, hopefully some good as well as bad
HarryMann is offline  
Old 8th Oct 2009, 07:45
  #13 (permalink)  
Thread Starter
 
Join Date: Jan 2006
Location: Between a rock and a hard place
Posts: 1,267
Likes: 0
Received 0 Likes on 0 Posts
Thanks again for taking your time, I am quite new to this and doesn't know anything more than in the ATPL-book. So I apologise if I don't get the big picture.

I found this picture as a reference,



Even though it's a generic picture, it seems that for pure turbojet (by pass 0) the thrust output dips initially to recover later on at higher Mach speed. My own guess, which I'd like to have confirmed, is that the increased ram pressure is dominating both the momentum drag (loss of thrust) and the reduction in acceleration through the engine (Voutlet - Vinlet).

For a turbofan, the increased front area will produce a great deal of momentum drag why it suffers quite some thrust loss with forward speed.

It's interesting that the JAA learning objectives specifically states that thrust from jet engines should be considered constant with increasing speed.
172_driver is offline  

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



Contact Us - Archive - Advertising - Cookie Policy - Privacy Statement - Terms of Service

Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.