Wikiposts
Search
Professional Pilot Training (includes ground studies) A forum for those on the steep path to that coveted professional licence. Whether studying for the written exams, training for the flight tests or building experience here's where you can hang out.

Adverse Yaw - Dont Understand

Thread Tools
 
Search this Thread
 
Old 24th Jul 2022, 05:01
  #1 (permalink)  
Thread Starter
 
Join Date: Sep 2012
Location: singapore
Posts: 26
Likes: 0
Received 0 Likes on 0 Posts
Adverse Yaw - Dont Understand

From youtube:
alieron deflect down:
effective increase in camber
increase in effective aoa
increase in lift

alieron deflect up:
effective decrease in camber
decrease in effective aoa
decrease in lift

Q1 Can anyone explain to me why if the alieron is deflected up, it will cause decrease in lift?
Airplane wings are curved at the top to produce more lift.
Am I right to say that?
Correct me if I wrong.

Q2 There is more drag generated by downward alieron.
Can anyone explain why there is MORE drag in a downward alieron compared to an upward alieron?
tcasdescend is offline  
Old 24th Jul 2022, 06:26
  #2 (permalink)  
 
Join Date: Nov 2000
Location: White Waltham, Prestwick & Calgary
Age: 72
Posts: 4,158
Likes: 0
Received 29 Likes on 14 Posts
I think if you invested in a good PPL book you would get the answers you seem to need.

You have answered Q1 yourself - wings are curved at the top to get more of a lift reaction, but they won't do that with a decrease in curvature.
paco is offline  
Old 24th Jul 2022, 07:00
  #3 (permalink)  
Thread Starter
 
Join Date: Sep 2012
Location: singapore
Posts: 26
Likes: 0
Received 0 Likes on 0 Posts
Read it but did not understand.

Based on the bernouli principle, the upper wing is curved which leads to more air molecules going across compared to bottom wing.This is higher velocity and lower pressure.

If the alieron is deflected up, wouldnt it lead to higher velocity and lower pressure just like a curved wingtip? --< wrong

Last edited by tcasdescend; 25th Jul 2022 at 00:17.
tcasdescend is offline  
Old 24th Jul 2022, 07:44
  #4 (permalink)  
 
Join Date: Dec 2001
Location: GA, USA
Posts: 3,233
Likes: 0
Received 25 Likes on 12 Posts
Don’t get to hung up on the curvature.
To try and figure this out imagine a symmetrical wing.
Symmetrical wing (flat board) at zero angle of attack creates zero lift.
Now angle the back end down, you’ve created camber aka curvature > “positive lift”
Now angle the back end up, you’ve created camber aka curvature but in the other direction > “negative” lift which is simply lift in the other direction.

Another way to see this is by looking at the rudder from the top.
Deflection left creates a lift vector that pushes the tail right.
Deflection right creates a lift vector that pushes the tail left.

Not a perfect explanation but it works.
B2N2 is offline  
Old 24th Jul 2022, 08:52
  #5 (permalink)  
 
Join Date: May 2002
Location: U.K.
Age: 47
Posts: 266
Received 5 Likes on 4 Posts
Originally Posted by tcasdescend
Read it but did not understand.

Based on the bernouli principle, the upper wing is curved which leads to more air molecules going across compared to bottom wing.This is higher velocity and lower pressure.

If the alieron is deflected up, wouldnt it lead to higher velocity and lower pressure just like a curved wingtip?
Fold some paper to make a wing shape and experiment. You’ll see the up going aileron makes the upper surface of the wing less curved.
The increase in drag from the wing with the down going aileron is due to induced drag - basically the drag caused by the lift. The downward deflected aileron has increased the lift. Drag is a by-product of lift, so more lift means more drag.
This isn’t a precise definition so anyone please correct me if required.
In a long winged, slow flying aircraft like a glider, simply moving the stick to one side will create so much drag on that side that the nose will swing in the opposite direction, (this is adverse yaw.) so rudder input is needed to prevent this.
Jump Complete is offline  
Old 24th Jul 2022, 08:59
  #6 (permalink)  
Thread Starter
 
Join Date: Sep 2012
Location: singapore
Posts: 26
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by B2N2
Don’t get to hung up on the curvature.
To try and figure this out imagine a symmetrical wing.
Symmetrical wing (flat board) at zero angle of attack creates zero lift.
Now angle the back end down, you’ve created camber aka curvature > “positive lift”
Now angle the back end up, you’ve created camber aka curvature but in the other direction > “negative” lift which is simply lift in the other direction.

Another way to see this is by looking at the rudder from the top.
Deflection left creates a lift vector that pushes the tail right.
Deflection right creates a lift vector that pushes the tail left.

Not a perfect explanation but it works.
I got it a little bit.
When the alieron deflects down, where is the chrod line and where is the relative wind?
I have a hard time visualising it.
tcasdescend is offline  
Old 24th Jul 2022, 11:43
  #7 (permalink)  
 
Join Date: Nov 2000
Location: White Waltham, Prestwick & Calgary
Age: 72
Posts: 4,158
Likes: 0
Received 29 Likes on 14 Posts
The chord line goes from the leading edge to the trailing edge so if the aileron goes down, so does the chord line against the relative airflow. The bit of the chord line at the leading edge stays where it is, but the other end stays with the back edge of the aileron.

The big thing to get into your head is that (contrary to popular belief) you are not sucked into the air, you are pushed up from underneath due to the line of least resistance created by the lower pressure above the wing.

It is the difference in thatic pressure above and below the wing that is directly involved with flight, but we cannot affect it directly. Instead, we change the dynamic pressure over the upper surface of the wings, especially in the first quarter, where pressure is decreased the most relative to the lower surface to create the change we need. No movement (of an aircraft) would be necessary were it not for the need to reduce the static pressure on the upper surface of its wings by changing the dynamic pressure.

An ailreon deflected upwards creates a lower angle of attack and therefore less of a lift reaction, and vice versa.

Last edited by paco; 24th Jul 2022 at 11:56.
paco is offline  
Old 24th Jul 2022, 13:16
  #8 (permalink)  
Thread Starter
 
Join Date: Sep 2012
Location: singapore
Posts: 26
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by paco
The chord line goes from the leading edge to the trailing edge so if the aileron goes down, so does the chord line against the relative airflow. The bit of the chord line at the leading edge stays where it is, but the other end stays with the back edge of the aileron.

The big thing to get into your head is that (contrary to popular belief) you are not sucked into the air, you are pushed up from underneath due to the line of least resistance created by the lower pressure above the wing.

It is the difference in thatic pressure above and below the wing that is directly involved with flight, but we cannot affect it directly. Instead, we change the dynamic pressure over the upper surface of the wings, especially in the first quarter, where pressure is decreased the most relative to the lower surface to create the change we need. No movement (of an aircraft) would be necessary were it not for the need to reduce the static pressure on the upper surface of its wings by changing the dynamic pressure.

An ailreon deflected upwards creates a lower angle of attack and therefore less of a lift reaction, and vice versa.
Dont understand why An ailreon deflected upwards creates a lower angle of attack while an alieron deflected downwards creates a higher AOA.
Arent they supposed to be symmetrical?
tcasdescend is offline  
Old 24th Jul 2022, 13:51
  #9 (permalink)  
 
Join Date: Feb 2022
Location: USA
Posts: 49
Received 18 Likes on 16 Posts
Symmetry in lift generated by aileron

I'm not a pilot, just an enthusiast and a long-time lurker, so please call me out if I'm totally off the wall on this. This is how I handle the symmetry issue:

1. Drag is proportional to net lift, so if lift = x, then drag = px (p is some positive number)
2. In straight flight (no aileron deflection), lift = x and drag = px on both wings
3. An aileron moving generates lift of y in the opposite direction.

Then

4. An aileron moving down generates lift of y. This adds to the lift of the rest of the wing for a total lift of (x + y) and a total drag of p(x + y); therefore drag increases on that side.
5. An aileron moving up generates lift of (-y). This "adds" to the lift of the rest of the wing for a total lift of (x - y), and a total drag of p(x - y); therefore drag decreases on that side.
6. Since there is more drag on the aileron-down side than the aileron-up side, the airplane will want to yaw towards the aileron-down side, hence adverse yaw that must be compensated for with rudder movement.

Is this more or less accurate?
judyjudy is offline  
Old 24th Jul 2022, 14:52
  #10 (permalink)  
 
Join Date: Nov 2000
Location: White Waltham, Prestwick & Calgary
Age: 72
Posts: 4,158
Likes: 0
Received 29 Likes on 14 Posts
You are talking about the wing as a whole, not just the aileron. Although they are symmetrical, the wing itself isn't when they are deflected either way.
paco is offline  
Old 25th Jul 2022, 00:13
  #11 (permalink)  
Thread Starter
 
Join Date: Sep 2012
Location: singapore
Posts: 26
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by B2N2
Don’t get to hung up on the curvature.
To try and figure this out imagine a symmetrical wing.
Symmetrical wing (flat board) at zero angle of attack creates zero lift.
Now angle the back end down, you’ve created camber aka curvature > “positive lift”
Now angle the back end up, you’ve created camber aka curvature but in the other direction > “negative” lift which is simply lift in the other direction.

Another way to see this is by looking at the rudder from the top.
Deflection left creates a lift vector that pushes the tail right.
Deflection right creates a lift vector that pushes the tail left.

Not a perfect explanation but it works.
I guess I will stick to your explanation.

Left deflection in rudder will cause tail to be pushed right and the plane to go left. Am I correct?

I am thinking that the alieron deflection causes air molecules to be blocked leading to reduced velocity and increased lift. So a downward deflected alieron will generate positive lift
tcasdescend is offline  
Old 25th Jul 2022, 02:40
  #12 (permalink)  
Thread Starter
 
Join Date: Sep 2012
Location: singapore
Posts: 26
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by paco
You are talking about the wing as a whole, not just the aileron. Although they are symmetrical, the wing itself isn't when they are deflected either way.
Ailerons

The picture speaks a thousand words
tcasdescend is offline  
Old 25th Jul 2022, 20:14
  #13 (permalink)  
 
Join Date: Feb 2022
Location: sweden
Posts: 1
Likes: 0
Received 0 Likes on 0 Posts
Yaw

Hi,

I hope you’re doing well.
Oskar Mattsson is offline  

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



Contact Us - Archive - Advertising - Cookie Policy - Privacy Statement - Terms of Service

Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.