Go Back  PPRuNe Forums > Non-Airline Forums > Private Flying
Reload this Page >

Quick question about altimeters & pressure

Wikiposts
Search
Private Flying LAA/BMAA/BGA/BPA The sheer pleasure of flight.

Quick question about altimeters & pressure

Thread Tools
 
Search this Thread
 
Old 7th Jan 2009, 22:16
  #1 (permalink)  
Thread Starter
 
Join Date: Jan 2009
Location: France
Posts: 3
Likes: 0
Received 0 Likes on 0 Posts
Quick question about altimeters & pressure

Hi - first post and hope this is in the right place (loads of forums!!)

I was reading a book that says in the ISA, if the atmospheric pressure were to be 300mb/hectopascals, an altimeter would register a height of 30,000 feet.

I've looked into this and I calculate that the altimeter would read 21,397 feet (1013.25hpa - 300hpa = 713.25pa x 30 feet = 21,397)

Can anyone explain - I can't get my head round it.

Thank you,

Jake.
j-ake is offline  
Old 7th Jan 2009, 22:20
  #2 (permalink)  
 
Join Date: Feb 2007
Location: Amsterdam
Posts: 4,598
Likes: 0
Received 0 Likes on 0 Posts
The 30 feet per mbar of pressure (actually 29 something) is only valid at sea level. As you go higher up, the feet per mbar increase.
BackPacker is offline  
Old 7th Jan 2009, 22:22
  #3 (permalink)  

Hovering AND talking
 
Join Date: Feb 2003
Location: Propping up bars in the Lands of D H Lawrence and Bishop Bonner
Age: 59
Posts: 5,705
Likes: 0
Received 0 Likes on 0 Posts
The flaw with your calculation (although not your logic) is that the rate of pressure change with altitude is not uniform; it is around 27hPa at sea level for a few thousand feet and then the rate increases with altitude. 300 hPa and 30,000ft is part of the ISA standard, along with standard pressure at other altitudes (which I'm afraid I don't have to hand). Any pressures within these standards have to be extrapolated.

Cheers

Whirls
Whirlygig is offline  
Old 7th Jan 2009, 22:27
  #4 (permalink)  
 
Join Date: Nov 2000
Location: Cambridge, England, EU
Posts: 3,443
Likes: 0
Received 1 Like on 1 Post
Er ... think about it. The 30' is taught as being about right at and close to sea level as an engineering approximation - there's no particular reason to suppose that it's linear all the way up to vacuum, and plenty of reasons to suppose it isn't.

Here's one: if it's 30' per mb all the way up, and it's 1000mb at sea level, then you'll encounter vacuum at 30*1000 = 30,000 feet. Most of us have been for rides in airliners which fly at higher than 30,000 and still have sufficient air for the wings and engines.

(You could try working out the next level of approximation using A level physics, but I suspect you'd fail as you wouldn't be able to work out the temperature gradient without additional information. Personally I'm not going to try.)
Gertrude the Wombat is offline  
Old 7th Jan 2009, 22:27
  #5 (permalink)  
Thread Starter
 
Join Date: Jan 2009
Location: France
Posts: 3
Likes: 0
Received 0 Likes on 0 Posts
Thanks for your help.

I guess the book kind of contradicts itself. It fails to mention the other standard pressure settings at different altitudes and also encourages the reader to assume the average change of pressure with height is 1mb per 30ft upto the tropopause whilst giving an answer that doesn't use the average change.

j-ake
j-ake is offline  
Old 7th Jan 2009, 22:53
  #6 (permalink)  

Hovering AND talking
 
Join Date: Feb 2003
Location: Propping up bars in the Lands of D H Lawrence and Bishop Bonner
Age: 59
Posts: 5,705
Likes: 0
Received 0 Likes on 0 Posts
In all honesty, for PPL, that's all you need to know. At CPL/ATPL level, then you need to know the various ISA altitude levels and associated pressure rates of change. Trouble is, after a year, I've forgotten

Cheers

Whirls
Whirlygig is offline  
Old 8th Jan 2009, 03:04
  #7 (permalink)  
LH2
 
Join Date: May 2005
Location: Abroad
Posts: 1,172
Likes: 0
Received 0 Likes on 0 Posts
You could try working out the next level of approximation using A level physics, but I suspect you'd fail as you wouldn't be able to work out the temperature gradient without additional information.
The pressure gradient is given by the hydrostatic equation: [dP/dh = -rho * g] where P = Pressure, h = geopotential altitude, rho = density, g = gravitational force.

g is constant at 9.80665 m/s^2 (ISA value)
Density as a function of pressure in the atmosphere can be obtained from [rho = P/R*T] where R = 287.1J/Kg/K (specific gas constant for dry air, ISA value) and T = temperature in Kelvin, obtainable as a function of lapse rate L and height [T = T0 - L * h]

So for example:

1) ISA change of height per mb at MSL:

dh/dP = (-1.225Kg/m^3 * 9.80665m/s^2)^-1
= -0.0832421398m/Pa
= -27.3104133ft/mb

2) ISA change of height per mb at the 300mb pressure level (30065ft=9163.8m[*] geopotential altitude)

T = 288.15K-0.0065K/m*9163.8m = 228.6K
rho = 30000Pa / (287.1 J/Kg/K * 228.6K)
= 0.457100647Kg/m^3

dh/dP = (-0.457100647Kg/m^3 * 9.80665m/s^2)^-1
= -0.22308352m/Pa
= -73.1901312ft/mb

[*] The geopotential altitude in metres for a given tropospheric pressure level in Pa can be obtained by the formula [(1.0 - (P/101325)^0.190263))*(288.15/0.0065)] which is derived by pulling one's hair while rearranging various ISA equations, or from an ISA tabulation.


All very simple stuff really (unless one goes and asks the gurus over at Tech Log)

Last edited by LH2; 8th Jan 2009 at 03:08. Reason: formatting
LH2 is offline  
Old 8th Jan 2009, 04:06
  #8 (permalink)  
 
Join Date: Jan 2008
Location: The Smaller Antipode
Age: 89
Posts: 31
Received 19 Likes on 12 Posts
...along with standard pressure at other altitudes (which I'm afraid I don't have to hand).
Dredged up from 50 yrs ago, rule of thumb we used to use to read the met. charts - 300 mb = 30,000'
400 mb = 24,000' 500 mb = 18,000 - I think.

It was only a guide, anyway, invariably the actual conditions encountered would be different, like headwind out, headwind home - that's Met. for you.
ExSp33db1rd is offline  
Old 8th Jan 2009, 06:15
  #9 (permalink)  
 
Join Date: Dec 2007
Location: england
Posts: 613
Likes: 0
Received 0 Likes on 0 Posts
It doesn't really matter though, as long as everyone's altimeter works in a similar fashion. If your altimeter indicates 30000 and another's indicates 31000 you will still miss each other. The altimeter is just displaying a difference in atmospheric pressure which we, conveniently, interpret as a vertical distance in feet.
Lurking123 is offline  
Old 8th Jan 2009, 06:57
  #10 (permalink)  
 
Join Date: Jun 2003
Location: EuroGA.org
Posts: 13,787
Likes: 0
Received 0 Likes on 0 Posts
As others say, the pressure does not fall linearly with altitude.

The 30ft/mb is only a very crude approximation which is useful only at low levels, say up to a few thousand feet.

This diagram (ignore the two data lines for now) shows how altitude (shown in metres on this one) varies with millibar pressure.
IO540 is offline  
Old 8th Jan 2009, 09:02
  #11 (permalink)  
Thread Starter
 
Join Date: Jan 2009
Location: France
Posts: 3
Likes: 0
Received 0 Likes on 0 Posts
Thanks again - you have to wonder why in a PPL book they suddenly go from talking a few thousand feet to an absurd 30,000 without at least acknowledging there are other principles behind the higher altitude
j-ake is offline  
Old 8th Jan 2009, 09:32
  #12 (permalink)  
 
Join Date: Jun 2003
Location: EuroGA.org
Posts: 13,787
Likes: 0
Received 0 Likes on 0 Posts
Wait till you start flying and then notice that the standard temperature lapse rate is nothing like real.
IO540 is offline  

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



Contact Us - Archive - Advertising - Cookie Policy - Privacy Statement - Terms of Service

Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.