PPRuNe Forums - View Single Post - Malaysian Airlines MH370 contact lost
View Single Post
Old 19th Mar 2014, 18:41
  #6177 (permalink)  
aguadalte
 
Join Date: Oct 2006
Location: Gone Flying...
Age: 63
Posts: 270
Likes: 0
Received 0 Likes on 0 Posts
If it went down in the sea, wouldn't they have listened?

The SOFAR Channel

NOAA Ocean Explorer Home

(bolds are mine)

This "channeling" of sound occurs because of the properties of sound and the temperature and pressure differences at different depths in the ocean. The ocean is divided into horizontal layers in which the speed of sound is greatly influenced by temperature in the upper layers and by pressure in the deeper layers. As temperature decreases, the speed of sound decreases, and as pressure (depth) increases, the speed of sound increases. Sound waves bend, or refract, towards the area of minimum sound speed. Therefore, a sound wave traveling through a thermocline (a region of rapid change in temperature with depth) tends to bend downward as the speed of sound decreases with decreasing water temperature, but then is refracted back upward as the speed of sound increases with increasing depth and pressure. This up-down-up-down bending of low-frequency sound waves allows the sound to travel many thousands of meters without the signal losing significant energy. The depth of this “channel” varies in different oceans depending on the salinity, the temperature, and depth of the water. At low and middle latitudes, the SOFAR channel axis lies between 600-1200 m below the sea surface. It is deepest in the subtropics and comes to the surface in high latitudes, where the sound propagates in the surface layer. Scientists often take advantage of the properties of the SOFAR channel. We have learned that by placing hydrophones at just the right depth (that is, at the axis of the sound channel) we are able to record sounds such as whale calls, earthquakes and man-made noise that occur many kilometers from the hydrophone. As a matter of fact, sometimes we can hear low-frequency sounds across entire ocean basins!


Faster than the Speed of Sound...

The speed of a wave is the rate at which vibrations move through the medium. Sound moves at a faster speed in water (1500 meters/sec) than in air (about 340 meters/sec) because the mechanical properties of water differ from air. Temperature also affects the speed of sound (e.g. sound travels faster in warm water than in cold water) and is very influential in some parts of the ocean. Remember that wavelength and frequency are related because the lower the frequency the longer the wavelength. More specifically, the wavelength of a sound equals the speed of sound in either air or water divided by the frequency of the wave. Therefore, a 20 Hz sound wave is 75 m long in the water (1500/20 = 75) whereas a 20 Hz sound wave in air is only 17 m long (340/20 = 17) in air.


As we descend below the surface of the sea, the speed of sound decreases with decreasing temperature. At the bottom of the thermocline, the speed of sound reaches its minimum; this is also the axis of the sound channel. Below the thermocline the temperature remains constant, but pressure increases which causes the speed of sound to increase again. Sound waves bend, or refract, towards the area of minimum sound speed. Therefore, a sound wave traveling in the sound channel bends up and down and up and down and can travel thousands of meters.

The SOFAR Channel

Sound in the sea can often be “trapped” and effectively carried very long distances by the “deep sound channel ” that exists in the ocean. This SOFAR or SOund Fixing And Ranging channel is so named because it was discovered that there was a "channel" in the deep ocean within which the acoustic energy from a small explosive charge (deployed in the water by a downed aviator) could travel over long distances. An array of hydrophones could be used to roughly locate the source of the charge thereby allowing rescue of downed pilots far out to sea. Sound, and especially low-frequency sound, can travel thousands of meters with very little loss of signal.

The field of ocean acoustics provides scientists with the tools needed to quantitatively describe sound in the sea. By measuring the frequency, amplitude, location and seasonality of sounds in the sea, a great deal can be learned about our oceanic environment and its inhabitants. Hydroacoustic monitoring (listening to underwater sounds) has allowed scientists to measure global warming, listen to earthquakes and the movement of magma through the sea floor during major volcanic eruptions, and to record low-frequency calls of large whales the world over. As our oceans become more noisy each year, the field of ocean acoustics will grow and only become more essential.
aguadalte is offline