PPRuNe Forums - View Single Post - Physics of falling objects
View Single Post
Old 12th Mar 2014, 23:50
  #43 (permalink)  
gums
 
Join Date: Jun 2009
Location: florida
Age: 81
Posts: 1,610
Received 55 Likes on 16 Posts
Thank you, Aram.

Good grief! Mass versus drag for the same object is very apparent in weapon development - ballistic co-efficient. It shows up on basic, old bombs that have different times of flight when released from "x" altitude. Fat ones don't fall as fast as "slick" ones.

It is true that Mother Earth attracts the falling object at basic gee. Forget very small gravitational forces due to altitude above the "Mother".

The point is that F=m*a, and drag is relevant to that equation if in the atmosphere. The falling object is subject to the same "a", but the "F" part has to do with drag, which a function of v^2 and Cd and area of the object. Eventually the drag force equals Mother Earth's force and you have "terminal velocity".

A very good science show years ago was called 'Terminal Velocity". It was about determining a falcon's capability to exceed 200 mph. The sky diver could only reach about 120 mph terminal velocity, so the dude trained the bird to follow a bean bag. He would add heavier lead weights to the bean bag, but the bag was the same area when related to the air while going down. He increased the terminal velocity of the bag to over 200 mph, and the doggone bird could keep up. How? Well, the bird changed its area, so the drag decreased/increased according to the equation of Cd* s*1/2*rho*v^2.

From personal experience dive-bombing, I can attest to the fact that deploying "dive brakes" kept me from exceeding the aero limits of the plane in a very steep dive. All else equal, then it was the area that was part of the drag equation that kept me from ripping the wings off, heh heh. Don't try this at home.

The end of my epistle is that parts of the plane with ottsa area, but relatively low weight will drift in the atmosphere on the way down. The wind will move them away from the point of impact of dense objects of lesser area like engines or fuel pumps or.... They come down slower, so the wind moves them, duhhh?

Been a long time since Aero 101, but I think I got most of it right.
gums is offline