PPRuNe Forums - View Single Post - ATSB reports
Thread: ATSB reports
View Single Post
Old 28th Dec 2013, 04:50
  #104 (permalink)  
Sarcs
 
Join Date: Apr 2007
Location: Go west young man
Posts: 1,733
Received 0 Likes on 0 Posts
TSBC in-flight breakup report a benchmark for ATsB??

Hmm..has Beaker inadvertently provided us with a template for a future re-modelled ATsB??

Most of us have been dubious (including Senator X #34) of Beaker's real intentions for calling in TSB Canada, whatever his original intentions it has been enlightening to look at how another TSI agency operates.

The TSBC are a no fuss, principled, extremely competent AAI agency that goes about it's business without fear nor favour nor fanfare...

In reference to my previous post:
Two updates on the investigation page today could possibly suggest a disturbing trend...but then again probably not..:
Quote:
AO-2013-226
In-flight breakup involving de Havilland DH-82, Tiger Moth, VH-TSG, near South Stradbroke Island, Qld on 16 December 2013
16 Dec 2013
Pending
23 Dec 2013

AO-2013-187
In-flight breakup involving PZL Mielec M18A Dromader aircraft, VH-TZJ, 37 km west of Ulladulla, NSW on 24 October 2013
24 Oct 2013
Interim Factual
23 Dec 2013
The TSBC recently released a final report into another tragic in-flight breakup accident, that IMO should set the benchmark for the two ATsB investigations mentioned above....

Aviation Investigation Report A11W0048

With equal weight the TSBC systematically examine all the possible causal factors (all the holes in the cheese) and end up with the following in their safety action section:
4.0 Safety action

4.1 Safety action taken

4.1.1 The Federal Aviation Administration

On 25 May 2011 the Federal Aviation Administration (FAA) issued Airworthiness Directive (AD) 2011-12-02. Effective on 02 June 2011, the AD applied to Viking Air Limited Model DHC-3 Otter airplanes (all serial numbers) that were equipped with a Honeywell TPE331-10 or -12JR turboprop engine installed per Supplemental Type Certificate (STC) SA09866SC (Texas Turbines Conversions, Inc.) and certified in any category.

The AD was prompted by analysis that showed airspeed limitations for the affected airplanes were not adjusted for the installation of a turboprop engine as stated in the regulations. The AD was issued to prevent the loss of airplane structural integrity due to the affected airplanes being able to operate at speeds exceeding those determined to be safe by the FAA.

The AD imposed a maximum operating speed (VMO) of 144 mph for DHC-3 Otter land/ski aircraft and 134 mph (VMO) for DHC-3 Otter seaplanes. Footnote 17

On 19 August 2011 the FAA issued AD 2011-18-11, which became effective on 03 October 2011. The AD applied to all Viking Air Limited Model DHC-3 Otter airplanes that were certified in any category. The AD resulted from an evaluation of revisions to the manufacturer's maintenance manual that added new repetitive inspections to the elevator control tabs. The AD stated that if these inspections were not done, excessive free-play in the elevator control tabs could develop. That condition could lead to loss of tab control linkage and severe elevator flutter, which could lead to a loss of control. Footnote 18

4.1.2 Black Sheep Aviation & Cattle Co. Ltd.

As a result of this accident Black Sheep Aviation established a system that correlates flight duty times to flight ticket invoice numbers. The information is entered on a new flight duty form which is delivered to company dispatch daily and and entered into company Flight Time/Duty Time/Rest Period records daily.

4.2 Safety action required

In June 2012, there were 6957 commercially registered aircraft listed on the Canadian Civil Aircraft Register, of which 5453 (78.4%) weighed less than 5700 kg. Most commercial aircraft weighing less than 5700 kg are operated under CARs subpart 702 Aerial Work and CARs subpart 703 Air Taxi Operations. These operations accounted for 88% of all accidents, 87% of all fatalities, and 82% of all serious injuries involving Canadian registered commercial aircraft in the past 10 years. If accidents involving commuter operations under CAR subpart 704 are added, the number of commercial air accidents jumps to 94% and the number of commercial air fatalities to 95%. Many of the aircraft operated by these companies are not required to be fitted with any type of flight recorder.

These smaller operators face challenging conditions, such as difficult terrain, and typically operate into smaller, more remote airports with less infrastructure. They often fly smaller, older aircraft with less sophisticated navigation and warning systems, which cause higher workloads for crew. Flight crews working for these operators are often working their way up in the system; they may have less training and experience, and often do not benefit from mentors able to pass on their experience.

In contrast, from 2001 to 2012, Canada's large carriers operating under CARs Subpart 705 have had only 1 fatal accident on home soil. Footnote 19 These large commercial carriers are required to have safety management systems (SMS), cockpit voice recorders (CVR), and flight data recorders (FDR). Many of these operators routinely download their flight data to conduct flight data monitoring (FDM) of normal operations. Air carriers with flight data monitoring programs have used flight data to identify problems such as unstabilized approaches and rushed approaches; exceedance of flap limit speeds; excessive bank angles after take-off; engine over-temperature events; exceedance of recommended speed thresholds; ground-proximity warning systems (GPWS)/terrain awareness and warning system (TAWS) warnings; onset of stall conditions; excessive rates of rotation; glide path excursions; and vertical acceleration. Footnote 20

Flight data monitoring has been implemented in many countries, and it is widely recognized as a cost-effective tool for improving safety. In the United States and Europe—thanks to ICAO—many carriers have had the program for years. Some helicopter operators have it already, and the FAA has recommended it.

Worldwide, FDM has proven to benefit safety by giving operators the tools to look carefully at individual flights and ultimately at the operation of their fleets over time. This review of objective data, especially as an integral component of a company safety management system, has proven beneficial in the proactive identification and correction of safety deficiencies and the prevention of accidents.

Several stand-alone lightweight flight recording systems which can record combined aircraft parametric data, cockpit audio data, airborne images and/or data-link messages are currently being manufactured. ED-155 MOPS for Lightweight Recording Systemspublished by the European Organization for Civil Aviation Equipment (EUROCAE) defines the minimum specifications for lightweight flight recording systems. While performance standards and TSOs exist, there is no requirement for aircraft not governed by CARs 605.33 to be fitted with any type of flight recorder, and Transport Canada does not intend to extend those requirements to smaller aircraft.

The development of lightweight flight recording system technology presents an opportunity to extend FDM approaches to smaller operations. Using this technology and FDM, these operations will be able to monitor, among other things, standard operating procedure compliance, pilot decision making, and adherence to operational limitations. Review of this information will allow operators to identify problems in their operations and initiate corrective actions before an accident takes place. In short, a whole new and promising avenue is now available to improve operational control and safety beyond CARs subpart 705 operations. In Canada, some companies have already decided to fit their aircraft with lightweight flight recording systems.

The Board acknowledges that there are issues that will need to be resolved to facilitate the effective use of recordings from lightweight flight recording systems, including questions about the integration of this equipment in an aircraft, human resource management, and legal issues such as the restriction on the use of cockpit voice and video recordings. Nevertheless, given the potential of this technology combined with FDM to significantly improve safety, the Board believes that no effort should be spared to overcome these obstacles.

Given the combined accident statistics for CARs Subparts 702, 703, and 704 operations, there is a compelling case for industry and the regulator to proactively identify hazards and manage the risks inherent in these operations. In order to manage risk effectively, they need to know why incidents happen and what the contributing safety deficiencies may be. Moreover, routine monitoring of normal operations can help these operators both improve the efficiency of their operations and identify safety deficiencies before they result in an accident. In the event that an accident does occur, recordings from lightweight flight recording systems will provide useful information to enhance the identification of safety deficiencies in the investigation.

Therefore the Board recommends that:

The Department of Transport work with industry to remove obstacles and develop recommended practices for the implementation of flight data monitoring and the installation of lightweight flight recording systems for commercial operators not required to carry these systems.A13-01
Tough act to follow...where's your money on the bureau, in it's current diabolical state of disfunction under Beaker, showing the same due diligence of the two in-flight breakup accident investigations listed above??
Sarcs is offline