View Single Post
Old 22nd Aug 2010, 00:47
  #56 (permalink)  
Join Date: Jan 2008
Location: FL 600. West of Mongolia
Posts: 462
Am I right or even slightly so in thinking that cruise climb and cruise descent was the flight and there was minimal actual level cruise in the "pond" crossing?
You are right on the button. Under NORMAL circumstances, Concorde never flew supersonically in level flight. You would always follow the Vmo bug on the ASI during the supersonic climb. (The ASI pointer actually nudged into the bug; it was a beautiful design). Initially this would be at a constant Vc of 400 kts, the 400 KT segment then went off towards 530 KTS as you climbed. You then 'stuck' to 530 knots until a fraction over 50,000', when 530 KTS became Mach 2. You would then continue the climb at between Mach 2 and around Mach 2.02, depending on the temperature of the day. (the colder the temperature, the faster you tended to fly). There was an extremely complex AFCS mode for the supersonic climb, that I promise to cover in anaother post.
So yes, on the whole, TOC did equal TOD.
The 'subsonic climb' wasn't quite as you thought; you'd normally subsonic climb to FL280, staying there (at Mach 0.95) until the acceleration point. Mach 0.95 was 'subsonic cruise'. But you were on the right track.
Oh, and NOPE, they never boomed us either
Nick Thomas
If an engine had a fire or an explosive failure; it would seem on the face of it that the adjacent engine could easily be affected. As everything on Concorde has a sound technical reason. I have been wondering what that reason or reasons was? and also if there was any inbuilt dividing protection between engines on the same wing?
Keeping the powerplants as separate as possible was a major design headache, but generally they were just that; there was a titanium centre wall between the two engines and a really substantial heatshield above the engine also, to protect the wing above. To give you an idea how all this worked in practice, in 1980 G-BOAF, flying at Mach 2 between JFK and LHR had a major failure of one of the engines, caused by a defective material ingot used in the forging of one of the 1st stage LP compressor blades; which was subsequently shed. (The analysis done by Rolls Royce ensured that no such incident ever happened again in the life of Concorde). The resulting mayhem terminated in a large amount of engine debris flying around, and a titanium fire burning in the engine bay also. The aircraft however decelerated and landed at Shannon safely. On inspection, although there was extensive damage found in the engine bay, the adjacent engine was completely unmarked, protected by the titanium centre wall, and more importantly, when the heat shield werer removed, the wing was found to be completely undamaged!
The only problem you ever had with the dual nacelle arrangement was if you had an engine surge above Mach 1.6 (These were relatively rare, but could happen with an engine or intake control system malfuntion). If one engine surged, the other would surge in sympathy, because of the shock system being expelled from one intake severely distorting the airflow into it's neighbour. These surges were loud, quite scary (to the crew that is, most passengers never noticed much), but in themselves did no damage at all. Delicate movement of the throttles (employed during the subsequent surge drill) would invariably restore peace and harmony again to all. (The intake on Concorde was self-starting, so no manual movement of the intake variable surfaces should be needed in this event). After this was over, normal flying was resumed again As I said before, these events were relatively rare, but when they did occur, they would be dealt with smartly and professionally; the engine and intake structure being undamaged. (Post surge inspetion checks were always carried out on the ground after an event, on both engine and intake, but nothing much was EVER found).
Would I also be right to assume that the max power delivered by the engines would reduce at altitude, thus even if the engines were run at near to available max power at high altitude it would be no way near the max power at lower levels?
The reduction of fuel flow as you climbed was quite interesting. Although the throttles would be 'at the wall' (dry power remember), the electronic control system was constantly winding fuel off as a function of Static Air Temperature, as well as falling Total Pressure. The system was always 'tweaking' as you climbed, and you only used as much fuel as you really needed to stay at Mach 2. There were various ratings that would also be manually selected at various phases of flight; each rating change 'detuned' the engine slightly, so yes, you did not run the engine when flying fast at anywhere near the levels you did at lower speeds/altitudes. The engine final ratings were changed from 'Climb' to 'Cruise' manually at FL 500, just as you hit Mach 2).
M2dude is offline