PPRuNe Forums - View Single Post - TCAS RA at Aircraft's Certified Ceiling
View Single Post
Old 13th Oct 2008, 17:18
  #44 (permalink)  
NonFlushingLav
 
Join Date: Oct 2008
Location: USA
Posts: 26
Likes: 0
Received 0 Likes on 0 Posts
Safety studies on TCAS estimate that the system improves safety in the airspace by a factor of between 3 and 5.However, it is well understood that part of the remaining risk is that TCAS may induce midair collisions: "In particular, it is dependent on the accuracy of the threat aircraft’s reported altitude and on the expectation that the threat aircraft will not make an abrupt maneuver that defeats the TCAS RA. The safety study also shows that TCAS II will induce some critical near midair collisions..." (See page 7 of Introduction to TCAS II Version 7 (PDF) in external links below).One potential problem with TCAS II is the possibility that a recommended avoidance maneuver might direct the flight crew to descend toward terrain below a safe altitude. (!!)Recent requirements for incorporation of ground proximity mitigate this risk. Ground proximity warning alerts have priority in the cockpit over TCAS alerts.Some pilots have been unsure how to act when their aircraft was requested to climb whilst flying at their maximum altitude. The accepted procedure is to follow the climb RA as best as possible, temporarily trading speed for height. The climb RA should quickly finish. In the event of a stall warning, the stall warning would take priority.[edit] TCAS LimitationsWhile the benefits of TCAS are undisputable, it can be assumed that TCAS' true technical and operational potential (and thus its possible benefits) is not yet being fully exploited because of the following limitations in current implementations:TCAS is limited to supporting only vertical separation advisories ATC isn't automatically informed about resolution advisories issued by TCAS-so that controllers may be unaware of TCAS-based resolution advisories or even issue conflicting instructions (unless ATC is explicitly informed about an issued RA during a high-workload situation), which may be a source of confusion for the affected crews In the above context, TCAS lacks automated facilities to enable pilots to easily report and acknowledge reception of a (mandatory) RA to ATC (and intention to comply with it), so that voice radio is currently the only option to do so, which however additionally increases pilot workload Today's TCAS displays do not provide information about resolution advisories issued to other (conflicting) aircraft, while resolution advisories issued to other aircraft may seem irrelevant to another aircraft, this information would enable and help crews to assess whether other aircraft (conflicting traffic) actually comply with RAs by comparing the actual rate of (altitude) change with the requested rate of change (which could be done automatically and visualized accordingly), thereby providing crucial realtime information for situational awareness during highly critical situations TCAS equipment today is often primarily range-based, as such it only displays the traffic situation within a configurable range of miles/feet, however under certain circumstances a "time-based" representation (i.e. within the next xx minutes) might be more intuitive. Lack of terrain/ground awareness information, which might be critical for creating feasible (non-dangerous, in the context of terrain clearance) and useful resolution advisories (i.e. prevent extreme descent instructions if close to terrain), to ensure that TCAS RAs never facilitate CFIT scenarios. Aircraft performance in general and current performance capabilities in particular (due to active aircraft configuration) are not taken into account during the negotiation and creation of resolution advisories, so that it is theoretically possible that resolution advisories are issued that demand climb or sink rates outside the normal/safe flight envelope of an aircraft during a certain phase of flight (i.e. due to the aircraft's current configuration), furthermore all traffic is being dealt with equally, there's basically no distinction taking place between different types of aircraft, neglecting the option of possibly exploiting aircraft-specific (performance) information to issue customized and optimized instructions for any given traffic conflict (i.e. by issuing climb instructions to those aircraft that can provide the best climb rates, while issuing descend instructions to aircraft providing comparatively better sink rates, thereby hopefully maximizing altitude change per time unit, that is separation) TCAS is primarily extrapolation-oriented, as such it is using algorithms trying to approximate 4D trajectory prediction, in order to assess and evaluate the current traffic situation within an aircraft's proximity, however the degree of data- reliability and usefulness could be significantly improved by enhancing said information with limited access to relevant flight plan information, as well as to relevant ATC instructions to get a more comprehensive picture of other traffic's (route) plans and intentions, so that flight path predictions would no longer be merely based on estimations but rather aircraft routing (FMS flight plan) and ATC instructions. For TCAS to work effectively, it needs to be fitted to all aircraft in a given airspace. However, TCAS is not fitted to many smaller aircraft mainly due to the high costs involved (between $25,000 and $150,000). Many smaller personal business jets for example, are currently not legally required to have TCAS installed, even though they fly in the same airspace as larger aircraft that are required to have proper TCAS equipment on board.
NonFlushingLav is offline