PPRuNe Forums - View Single Post - Wing boundary layer temp
View Single Post
Old 8th Sep 2008, 11:45
  #5 (permalink)  
Re-entry
 
Join Date: Apr 2003
Location: orbital
Posts: 186
Likes: 0
Received 0 Likes on 0 Posts
Hey Basil. I found this:-

As the stream velocity U becomes larger, its kinetic energy, U2/2, becomes comparable to stream enthalpy, cpT, where cp is the specific heat at constant pressure and T is the absolute temperature. Changes in temperature and density begin to be important, and the flow can no longer be considered incompressible. Liquids flow at very small Mach numbers, and compressible flows are primarily gas flows. See also Gas; Mach number.

In a flow with supersonic stream velocity, the no-slip condition is still valid, and much of the boundary-layer flow near the wall is at low speed or subsonic. The fluid enters the boundary layer and loses much of its kinetic energy, of which a small part is conducted away although most is converted into thermal energy. Thus the near-wall region of a highly compressible boundary layer is very hot, even if the wall is cold and is drawing heat away. The basic difference between low and high speed is the conversion of kinetic energy into higher temperatures across the entire boundary layer.

In a low-speed (incompressible) boundary layer, a cold wall simply means that the wall temperature is less than the free-stream temperature. The heat flow is from high toward lower temperature, that is, into the wall. For a low-speed insulated wall, the boundary-layer temperature is uniform. For a high-speed flow, however, an insulated wall has a high surface temperature because of the viscous dissipation energy exchange in the layer.


Here is the link
Re-entry is offline