PPRuNe Forums - View Single Post - turboprop VMO
Thread: turboprop VMO
View Single Post
Old 2nd Jun 2006, 05:45
  #10 (permalink)  
Brian Abraham
 
Join Date: Aug 2003
Location: Sale, Australia
Age: 80
Posts: 3,832
Likes: 0
Received 0 Likes on 0 Posts
hoss, FAR 25 has the following
Maximum operating limit speed.
The maximum operating limit speed (VMO/MMO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be deliberately exceeded in any regime of flight (climb, cruise, or descent), unless a higher speed is authorized for flight test or pilot training operations. VMO/MMO must be established so that it is not greater than the design cruising speed VC and so that it is sufficiently below VD/MD or VDF/MDF, to make it highly improbable that the latter speeds will be inadvertently exceeded in operations. The speed margin between VMO/MMO and VD/MD or VDFM/DF may not be less than that determined under §25.335(b) or found necessary during the flight tests conducted under §25.253.
25.253 High-speed characteristics.
(a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met:
(1) Operating conditions and characteristics likely to cause inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed at any likely cruise speed up to VMO/MMO. These conditions and characteristics include gust upsets, inadvertent control movements, low stick force gradient in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to airspeed limit altitudes.
(2) Allowing for pilot reaction time after effective inherent or artificial speed warning occurs, it must be shown that the airplane can be recovered to a normal attitude and its speed reduced to VMO/MMO, without–
(i) Exceptional piloting strength or skill;
(ii) Exceeding VD/MD, VDF/MDF, or the structural limitations; and
(iii) Buffeting that would impair the pilot's ability to read the instruments or control the airplane for recovery.
(3) With the airplane trimmed at any speed up to VMO/MMO, there must be no reversal of the response to control input about any axis at any speed up to VDF/MDF. Any tendency to pitch, roll, or yaw must be mild and readily controllable, using normal piloting techniques. When the airplane is trimmed at VMO/MMO, the slope of the elevator control force versus speed curve need not be stable at speeds greater than VFC/MFC, but there must be a push force at all speeds up to VDF/MDF and there must be no sudden or excessive reduction of elevator control force as VDF/MDF is reached.
(b) Maximum speed for stability characteristics, VFC/MFC. VFC/MFC is the maximum speed at which the requirements of §§25.143(f), 25.147(e), 25.175(b)(1), 25.177, and 25.181 must be met with flaps and landing gear retracted. It may not be less than a speed midway between VMO/MMO and VDF/MDF, except that for altitudes where Mach number is the limiting factor, MFC need not exceed the Mach number at which effective speed warning occurs.
25.335 Design airspeeds.
The selected design airspeeds are equivalent airspeeds (EAS). Estimated values of VS0 and VS1 must be conservative.
(a) Design cruising speed, VC. For VC, the following apply:
(1) The minimum value of VC must be sufficiently greater than VB to provide for inadvertent speed increases likely to occur as a result of severe atmospheric turbulence.
(2) Except as provided in §25.335(d)(2), VC may not be less than VB + 1.32 UREF (with UREF as specified in §25.341(a)(5)(i)). However VC need not exceed the maximum speed in level flight at maximum continuous power for the corresponding altitude.
(3) At altitudes where VD is limited by Mach number, VC may be limited to a selected Mach number.
(b) Design dive speed, VD. VD must be selected so that VC/MC is not greater than 0.8 VD/MD, or so that the minimum speed margin between VC/MC and VD/MD is the greater of the following values:
(1) From an initial condition of stabilized flight at VC/MC, the airplane is upset, flown for 20 seconds along a flight path 7.5° below the initial path, and then pulled up at a load factor of 1.5g (0.5g acceleration increment). The speed increase occurring in this maneuver may be calculated if reliable or conservative aerodynamic data is used. Power as specified in §25.175(b)(1)(iv) is assumed until the pullup is initiated, at which time power reduction and the use of pilot controlled drag devices may be assumed;
(2) The minimum speed margin must be enough to provide for atmospheric variations (such as horizontal gusts, and penetration of jet streams and cold fronts) and for instrument errors and airframe production variations. These factors may be considered on a probability basis. The margin at altitude where MC is limited by compressibility effects must not less than 0.07M unless a lower margin is determined using a rational analysis that includes the effects of any automatic systems. In any case, the margin may not be reduced to less than 0.05M.
All of FAR 25 can be found at http://ecfr.gpoaccess.gov/cgi/t/text...25_main_02.tpl

23.1545 Airspeed indicator.
(a) Each airspeed indicator must be marked as specified in paragraph (b) of this section, with the marks located at the corresponding indicated airspeeds.

(b) The following markings must be made:

(1) For the never-exceed speed VNE, a radial red line.

(2) For the caution range, a yellow arc extending from the red line specified in paragraph (b)(1) of this section to the upper limit of the green arc specified in paragraph (b)(3) of this section.

(3) For the normal operating range, a green arc with the lower limit at VS1 with maximum weight and with landing gear and wing flaps retracted, and the upper limit at the maximum structural cruising speed VNO established under §23.1505(b).

(4) For the flap operating range, a white arc with the lower limit at VS0 at the maximum weight, and the upper limit at the flaps-extended speed VFE established under §23.1511.

(5) For reciprocating multiengine-powered airplanes of 6,000 pounds or less maximum weight, for the speed at which compliance has been shown with §23.69(b) relating to rate of climb at maximum weight and at sea level, a blue radial line.

(6) For reciprocating multiengine-powered airplanes of 6,000 pounds or less maximum weight, for the maximum value of minimum control speed, VMC, (one-engine-inoperative) determined under §23.149(b), a red radial line.

(c) If VNE or VNO vary with altitude, there must be means to indicate to the pilot the appropriate limitations throughout the operating altitude range.

(d) Paragraphs (b)(1) through (b)(3) and paragraph (c) of this section do not apply to aircraft for which a maximum operating speed VMO/MMO is established under §23.1505(c). For those aircraft there must either be a maximum allowable airspeed indication showing the variation of VMO/MMO with altitude or compressibility limitations (as appropriate), or a radial red line marking for VMO/MMO must be made at lowest value of VMO/MMO established for any altitude up to the maximum operating altitude for the airplane.

The implication of FAR 23 is that a piston aircraft converted to turbine power without any other mods will have a reduced red line. That is the turbines Vmo will be less than the pistons Vne. Bonanza would be a candidate for this oddity.

Last edited by Brian Abraham; 2nd Jun 2006 at 09:16.
Brian Abraham is offline