PPRuNe Forums - View Single Post - Thrust required for approach
View Single Post
Old 13th May 2006, 19:08
  #3 (permalink)  
Mad (Flt) Scientist
 
Join Date: Sep 2002
Location: La Belle Province
Posts: 2,179
Likes: 0
Received 0 Likes on 0 Posts
For simnplicity, assume the aircraft to be at 0 deg AoA when at Vref, for both the light and heavy cases. That allows us to have the thrust aligned with the direction of travel, which simplifies things a little bit.

Consider the forces acting both along and normal to the flight path.

Normal: We have the aircraft lift, plus a component of the weight (cos 3 degs * the weight, in fact)

Along: We have the drag, the thrust, and a component of gravity (sin 3 degs * the weight)

If we assume equilibrium, then:

Lift = W*cos3
Drag=T + W*sin3

In order to see the relationship between T and W for this case, we need to eliminate Lift and Drag. If we assume they are a fixed ratio k for all cases of W (which seems fair for a fixed AoA approach condition), then:

L/D=k
>
L = D * k
>
W*cos3 = ( T + W * sin3) * k
which, after further messing about, gives:

Thrust = Weight * ( (cos3 - ksin3) / k)

Therefore, as long as (cos3-ksin3) is positive, thrust will increase with increasing weight. If it changes sign, then thrust DECREASES with increasing weight.

So, the question is, what is the L/D for the approach case.

If (L/D) sin3 = cos 3 then we have the diciding case

i.e. L/D = 19 (approx) is the dividing case.

So, if your L/D is less than 19 (which seems a reasonable assumption) you should have increasing thrust with increasing weight for a 3 deg glideslope (for the other minor assumptions). But you will need less thrust than in level flight for both cases (of course)

Now, if you assume a rather steeper descent rate the case becomes of more general interest, since the L/D value for the swapover becomes lower (for 10 degrees, it's below 6)
Mad (Flt) Scientist is offline