PPRuNe Forums - View Single Post - Help me with a brain teaser - guaranteed to drive aerody gurus insane!?!
Old 2nd Sep 2005, 12:18
  #32 (permalink)  
swh

Eidolon
 
Join Date: May 2001
Location: Some hole
Posts: 2,179
Received 24 Likes on 13 Posts
HOWEVER a particuar [particular] wing stalls at a particual [particular] A of A regardless of weight or c of g.
Yes, a stall will occur when the critical angle of attack is reached in any phase of flight, That being said, an aircraft with a forward CofG will do so at a higher speed S&L everything else being the same.

{will just talk conventional geometry for simplicity all else being equal i.e same aircraft type, same configuration, same mass}

Aircraft A

With a forward CG you will reach that AoA at a higher speed due to the higher down force (lift component perpendicular to the relative air flow in the same direction as gravity) needed to be generated by the tail plane to counter the lift - weight (mass x g) couple .

This is an aerodynamic moment about the CG which effectively increases the weight of the aircraft by the amount of down force generated.

Aircraft B

Another method to generate the same couple with an aircraft of the same mass is to redistribute the mass so part of the fuel load fuel is carried in the tailplane. The additional weight (mass of fuel x g) in the tailplane can be sufficient to counter part or all of the lift weight couple (for this example I will take the extreme, and have zero down force by the tail).

In straight and level flight, the lift needed to be generated by
Aircraft A = mass x g + amount of down force by the tail
Aircraft B = mass x g

So aircraft B will have a lower AoA, as the total lift needed to be generated in just mass x g, this will apply in all phases of flight.

Another way to look at it is that an aircraft with an unfavorable CofG location (read forward limit) can have a higher AoA than that of a aircraft with a higher mass with a favorable CofG position, in any phase of flight.

Going back to what you said before “all else being equal i.e same aircraft type, same configuration, that an aircraft being operated at a heavier weight requires a larger AOA maintain altitude”, so another consideration is CofG location.

Long range aircraft about these days use the optimisation of CofG in flight to reduce the induced drag, this compounds as less fuel is needed not only for the reduction of induced drag, also the reduced fuel load.

swh is offline