PPRuNe Forums - View Single Post - MAX’s Return Delayed by FAA Reevaluation of 737 Safety Procedures Mk II
Old 24th Dec 2019, 06:34
  #207 (permalink)  
MechEngr
 
Join Date: Oct 2019
Location: USA
Posts: 864
Received 214 Likes on 118 Posts
Originally Posted by edmundronald
Yes. And we’re saying we believe that the envelope where the MAX is natively nice is too small ...

Also, I would think that any pilot who gets into a MAX at this point should demand to know the real intended function of MCAS. It’s possible that at high AoA, elevator authority effects are very substantially different from the NG, which is why MCAS was redesigned to react fairly strongly. Please take this with a large grain of salt, I am not a pilot.

Edmund
An airplane in flight is essentially a teeter-totter balanced on the Center of Pressure (CP) for the entire airplane and is considered to be the point where the lift acts. One element of this is that lift from positive AoA produces a nose-down pitch torque. To counter that, the horizontal stabilizer produces a nose up pitch torque by pushing down on the aft end of the fuselage. When these are balanced everyone is happy, or at least the AoA isn't changing. Of note is that the stabilizer functions as a wing that produces lift opposite to the lift of the wing and has its own local AoA.

If one looks at all possible stable AoAs one would like to see a linear relation between the AoA of the wing and the stabilizer trim position required to balance it. But the Max seems to have another player on the teeter-totter and that is the nacelle of the engine which starts producing noticeable nose up pitch torque at high AoA. So the stab trim position is no longer quite as linear as it was. Since the elevator also affects the pitch torque, that's where the effect could be noticed by the pilot as they move the controls without adjusting the trim. The function of MCAS is to make it so the pilot doesn't experience this new player.

Because it's just to offset the new player and depends on AoA and airspeed (because the amount of lift the stabilizer produces depends on those things to generate nose-up torque) it really isn't moving much or fast; it just has to be fast enough to keep up with AoA changes to the aircraft and to speed changes, neither of which ought to be particularly high. It gets more pronounced at low speeds because not only does the requisite high AoA needed to provide lift at low speeds increase the effect from the engine nacelles, the lower speed also means the stabilizer has less dynamic pressure to work with. This is no different than, say, rudder authority at low speed; the rudder has to move a lot farther to get the same effect at low speed than high speed.

AFAIK that's the intended MCAS function. To meet a linearity requirement for pilot controls by rebalancing a larger input from the engine nacelles than was existent, but could be ignored, on earlier models. It's not fast enough for a negative stability situation, so that's not it.
MechEngr is offline