PPRuNe Forums - View Single Post - MAX’s Return Delayed by FAA Reevaluation of 737 Safety Procedures
Old 2nd Nov 2019, 12:56
  #3689 (permalink)  
megan
 
Join Date: Mar 2005
Location: N/A
Posts: 5,944
Received 394 Likes on 209 Posts
What is the purpose of the regulation which mandates a progressive increase in control column force with increasing angle of attack, if not to protect against stalling?
It has nothing to do with stalling per se. Relevant FAR's in my eyes.

§25.145 Longitudinal control.

(a) It must be possible, at any point between the trim speed prescribed in §25.103(b)(6) and stall identification (as defined in §25.201(d)), to pitch the nose downward so that the acceleration to this selected trim speed is prompt with(1) The airplane trimmed at the trim speed prescribed in §25.103(b)(6);

(2) The landing gear extended;

(3) The wing flaps (i) retracted and (ii) extended; and

(4) Power (i) off and (ii) at maximum continuous power on the engines. (b) With the landing gear extended, no change in trim control, or exertion of more than 50 pounds control force (representative of the maximum short term force that can be applied readily by one hand) may be required for the following maneuvers1) With power off, flaps retracted, and the airplane trimmed at 1.3 VSR1, extend the flaps as rapidly as possible while maintaining the airspeed at approximately 30 percent above the reference stall speed existing at each instant throughout the maneuver.(2) Repeat paragraph (b)(1) except initially extend the flaps and then retract them as rapidly as possible.

(3) Repeat paragraph (b)(2), except at the go-around power or thrust setting.

(4) With power off, flaps retracted, and the airplane trimmed at 1.3 VSR1, rapidly set go-around power or thrust while maintaining the same airspeed.

(5) Repeat paragraph (b)(4) except with flaps extended.

(6) With power off, flaps extended, and the airplane trimmed at 1.3 VSR1, obtain and maintain airspeeds between VSW and either 1.6 VSR1 or VFE, whichever is lower.(c) It must be possible, without exceptional piloting skill, to prevent loss of altitude when complete retraction of the high lift devices from any position is begun during steady, straight, level flight at 1.08 VSR1 for propeller powered airplanes, or 1.13 VSR1 for turbojet powered airplanes, with—(1) Simultaneous movement of the power or thrust controls to the go-around power or thrust setting;

(2) The landing gear extended; and

(3) The critical combinations of landing weights and altitudes. (d) If gated high-lift device control positions are provided, paragraph (c) of this section applies to retractions of the high-lift devices from any position from the maximum landing position to the first gated position, between gated positions, and from the last gated position to the fully retracted position. The requirements of paragraph (c) of this section also apply to retractions from each approved landing position to the control position(s) associated with the high-lift device configuration(s) used to establish the go-around procedure(s) from that landing position. In addition, the first gated control position from the maximum landing position must correspond with a configuration of the high-lift devices used to establish a go-around procedure from a landing configuration. Each gated control position must require a separate and distinct motion of the control to pass through the gated position and must have features to prevent inadvertent movement of the control through the gated position. It must only be possible to make this separate and distinct motion once the control has reached the gated position.

§25.175 Demonstration of static longitudinal stability.

Static longitudinal stability must be shown as follows:

(a) Climb. The stick force curve must have a stable slope at speeds between 85 and 115 percent of the speed at which the airplane—

(1) Is trimmed, with—

(i) Wing flaps retracted;

(ii) Landing gear retracted;

(iii) Maximum takeoff weight; and (iv) 75 percent of maximum continuous power for reciprocating engines or the maximum power or thrust selected by the applicant as an operating limitation for use during climb for turbine engines; and(2) Is trimmed at the speed for best rate-of-climb except that the speed need not be less than 1.3 VSR1.

(b) Cruise. Static longitudinal stability must be shown in the cruise condition as follows: (1) With the landing gear retracted at high speed, the stick force curve must have a stable slope at all speeds within a range which is the greater of 15 percent of the trim speed plus the resulting free return speed range, or 50 knots plus the resulting free return speed range, above and below the trim speed (except that the speed range need not include speeds less than 1.3 VSR1, nor speeds greater than VFC/MFC, nor speeds that require a stick force of more than 50 pounds), with—(i) The wing flaps retracted;

(ii) The center of gravity in the most adverse position (see §25.27);

(iii) The most critical weight between the maximum takeoff and maximum landing weights; (iv) 75 percent of maximum continuous power for reciprocating engines or for turbine engines, the maximum cruising power selected by the applicant as an operating limitation (see §25.1521), except that the power need not exceed that required at VMO/MMO; and(v) The airplane trimmed for level flight with the power required in paragraph (b)(1)(iv) of this section. (2) With the landing gear retracted at low speed, the stick force curve must have a stable slope at all speeds within a range which is the greater of 15 percent of the trim speed plus the resulting free return speed range, or 50 knots plus the resulting free return speed range, above and below the trim speed (except that the speed range need not include speeds less than 1.3 VSR1, nor speeds greater than the minimum speed of the applicable speed range prescribed in paragraph (b)(1), nor speeds that require a stick force of more than 50 pounds), with—(i) Wing flaps, center of gravity position, and weight as specified in paragraph (b)(1) of this section;

(ii) Power required for level flight at a speed equal to (VMO + 1.3 VSR1)/2; and

(iii) The airplane trimmed for level flight with the power required in paragraph (b)(2)(ii) of this section. (3) With the landing gear extended, the stick force curve must have a stable slope at all speeds within a range which is the greater of 15 percent of the trim speed plus the resulting free return speed range, or 50 knots plus the resulting free return speed range, above and below the trim speed (except that the speed range need not include speeds less than 1.3 VSR1, nor speeds greater than VLE, nor speeds that require a stick force of more than 50 pounds), with—(i) Wing flap, center of gravity position, and weight as specified in paragraph (b)(1) of this section; (ii) 75 percent of maximum continuous power for reciprocating engines or, for turbine engines, the maximum cruising power selected by the applicant as an operating limitation, except that the power need not exceed that required for level flight at VLE; and(iii) The aircraft trimmed for level flight with the power required in paragraph (b)(3)(ii) of this section.

(c) Approach. The stick force curve must have a stable slope at speeds between VSW and 1.7 VSR1, with—

(1) Wing flaps in the approach position;

(2) Landing gear retracted;

(3) Maximum landing weight; and

(4) The airplane trimmed at 1.3 VSR1 with enough power to maintain level flight at this speed.

(d) Landing. The stick force curve must have a stable slope, and the stick force may not exceed 80 pounds, at speeds between VSW and 1.7 VSR0 with—

(1) Wing flaps in the landing position;

(2) Landing gear extended;

(3) Maximum landing weight;

(4) The airplane trimmed at 1.3 VSR0 with—

(i) Power or thrust off, and

(ii) Power or thrust for level flight.

(5) The airplane trimmed at 1.3 VSR0 with power or thrust off.

§25.255 Out-of-trim characteristics.

(a) From an initial condition with the airplane trimmed at cruise speeds up to VMO/MMO, the airplane must have satisfactory maneuvering stability and controllability with the degree of out-of-trim in both the airplane nose-up and nose-down directions, which results from the greater of—(1) A three-second movement of the longitudinal trim system at its normal rate for the particular flight condition with no aerodynamic load (or an equivalent degree of trim for airplanes that do not have a power-operated trim system), except as limited by stops in the trim system, including those required by §25.655(b) for adjustable stabilizers; or(2) The maximum mistrim that can be sustained by the autopilot while maintaining level flight in the high speed cruising condition.(b) In the out-of-trim condition specified in paragraph (a) of this section, when the normal acceleration is varied from + 1 g to the positive and negative values specified in paragraph (c) of this section—(1) The stick force vs. g curve must have a positive slope at any speed up to and including VFC/MFC; and

(2) At speeds between VFC/MFC and VDF/MDF the direction of the primary longitudinal control force may not reverse.

(c) Except as provided in paragraphs (d) and (e) of this section, compliance with the provisions of paragraph (a) of this section must be demonstrated in flight over the acceleration range—
(1) −1 g to + 2.5 g; or

(2) 0 g to 2.0 g, and extrapolating by an acceptable method to −1 g and + 2.5 g. (d) If the procedure set forth in paragraph (c)(2) of this section is used to demonstrate compliance and marginal conditions exist during flight test with regard to reversal of primary longitudinal control force, flight tests must be accomplished from the normal acceleration at which a marginal condition is found to exist to the applicable limit specified in paragraph (b)(1) of this section.(e) During flight tests required by paragraph (a) of this section, the limit maneuvering load factors prescribed in §§25.333(b) and 25.337, and the maneuvering load factors associated with probable inadvertent excursions beyond the boundaries of the buffet onset envelopes determined under §25.251(e), need not be exceeded. In addition, the entry speeds for flight test demonstrations at normal acceleration values less than 1 g must be limited to the extent necessary to accomplish a recovery without exceeding VDF/MDF.(f) In the out-of-trim condition specified in paragraph (a) of this section, it must be possible from an overspeed condition at VDF/MDF to produce at least 1.5 g for recovery by applying not more than 125 pounds of longitudinal control force using either the primary longitudinal control alone or the primary longitudinal control and the longitudinal trim system. If the longitudinal trim is used to assist in producing the required load factor, it must be shown at VDF/MDF that the longitudinal trim can be actuated in the airplane nose-up direction with the primary surface loaded to correspond to the least of the following airplane nose-up control forces1) The maximum control forces expected in service as specified in §§25.301 and 25.397.

(2) The control force required to produce 1.5 g. (3) The control force corresponding to buffeting or other phenomena of such intensity that it is a strong deterrent to further application of primary longitudinal control force.

Last edited by megan; 2nd Nov 2019 at 13:10.
megan is offline