PPRuNe Forums - View Single Post - Reaction Engines’ Sabre Rocket Engine Demo Core Passes Review
Old 22nd Oct 2019, 06:48
  #19 (permalink)  
ORAC
Ecce Homo! Loquitur...
 
Join Date: Jul 2000
Location: Peripatetic
Posts: 17,430
Received 1,594 Likes on 731 Posts
http://aviationweek.com/aircraft-pro...ypersonic-testReaction Engines Precooler Passes Hypersonic Test

Reaction Engines’ precooler has successfully run at Mach 5 temperatures, validating for the first time the capability of the novel heat exchanger design to operate at hypersonic flight conditions for atmospheric and space access applications.

The breakthrough test is pivotal to Reaction’s goal of using the lightweight heat exchanger (HTX) to boost high-speed turbojets for supersonic and hypersonic vehicles as well as for developing the company’s Synergistic Air-Breathing Rocket Engine (Sabre), which is targeted at low-cost, repeatable access to space.

Forming the culmination of a DARPA contract awarded in 2017, the Mach 5 run took place in the second week of October at the company’s TF2 test facility at the Colorado Air and Space Port near Watkins. Established on an all-new site just 22 months ago, the high-speed test comes seven months after the heat exchanger demonstrated operation at supersonic conditions equal to Mach 3.3. Heated air for the tests is generated by a General Electric J79, which operated at military power for the supersonic runs and in maximum afterburner for the tests up to Mach 5.

“We had high confidence but, until these tests over the past six months, there was just an assumption this technology would work at these high temperatures because there was no way to test it. So, I’m very glad it came off,” says Adam Dissel, president of Reaction Engines. Although initial tests in the UK in 2012 using a Rolls-Royce Viper turbojet demonstrated the ability of the HTX to chill air from ambient to under -120C (-184F), the larger-scale evaluations in the U.S. were viewed as the true acid test. “Taking the whole device up to these high temperatures as part of an integrated system is quite a design challenge,” he adds.

Describing the test result as a “major moment in the development of a breakthrough in aerospace technology,” Reaction Engines CEO Mark Thomas says: “We are seeing significant interest from a range of potential customers and technology partners.”.........

Following the activation of the afterburner system on the J79, the team took a build-up approach toward hitting the high Mach target. “Through early summer, we tested multiple points of the envelope, eventually running up to about Mach 4.3. We tested at various airflow rates with varying coolant rates of helium mass flow passing through the precooler,” says Dissel. The approach yielded “a good understanding of the physics and the air-pressure drop across the matrix as it transitions across the precooler,” he adds. The results also indicate the HTX responds quickly to variable airflow conditions. “The precooler has behaved amazingly well,” Dissel says. “It adapts to changing flow nearly instantly, so that was good to see. It’s part of a function of how light it is, so the precooler is not relying on thermal inertia to survive.”

By the time tests got to Mach 4.3 levels, however, the group realized that the test infrastructure was approaching heating limits before the precooler could reach its planned test condition. “The challenge we have had on the facility side was tricking it into thinking it’s flying on a Mach 5 aircraft. To ensure we had the right condition, we took a couple of months to make some upgrades and added insulation blankets to reduce the heat transfer into the walls of the airflow ducts and plenum,” he adds. The upgrade, which also involved increasing the mass flow of the helium cooling circuit, made sure “we were ready to go for gold on the max condition,” Dissel notes.......
ORAC is offline