PPRuNe Forums - View Single Post - B777 Landing Attitude Modification
View Single Post
Old 2nd Apr 2018, 17:16
  #1 (permalink)  
JammedStab
 
Join Date: Apr 2008
Location: nowhere
Posts: 1
Likes: 0
Received 0 Likes on 0 Posts
B777 Landing Attitude Modification

Consider the following to be some of the interesting stuff that Boeing just does not tell you about much....

There is tailstrike protection designed into the software but also nosewheel first touchdown protection. While it can vary by model/serial number, LAM will reduce flaperon droop and reflex the ailerons, pushing their neutral position as much as ten degrees up which reduces lift, increases AOA which increases nosewheel clearance.

To quote from the patent(a lot of info not included)....

https://patents.google.com/patent/US5823479

"The probability of aft body contacts during approach and landing involves readjusting a variety of flight parameters to decrease the risk of an aft body contact. These adjustments include increasing landing approach speeds, increasing trailing edge flap deflections at the landing flap detents, and increasing lateral control surface symmetric droop. Vortex generators have been added to airplane wings to address the same problem. All of these solutions succeed in reducing the landing pitch attitude of an airplane, resulting in a greater aft body contact margin. However, at the same time, the solutions reduce the nose gear contact margin. Therefore, while the probability of aft body contacts is decreased, the probability of nose gear first contacts is attendantly increased.

Like aft body contacts, nose gear first contacts can be avoided by adjusting a variety of flight parameters. Decreasing landing approach speeds, decreasing trailing edge flap deflections at the landing flap detents, and decreasing lateral control surface symmetric droop all increase the landing pitch attitude of an airplane. This increase improves nose gear contact margin. The drawback of these various approaches is that increasing pitch attitude attendantly reduces aft body contact margin. The resulting reduction in aft body contact margin consequently increases the probability of aft body contacts.

To overcome the above-mentioned disadvantages, pitch attitude limiting techniques have been proposed. In effect, pitch attitude limiting automatically limits pitch attitudes to a predetermined range. While restrictions on pitch attitude may serve to reduce the probability of nose gear first contacts and aft body contacts, they unduly restrict a pilot's control of the airplane. Restricting a pilot's control of an airplane is undesirable because it violates some fundamental airplane design philosophies, which dictate that a pilot has absolute control of the airplane.

Other proposals to decrease the probability of nose gear first landings without also increasing the probability of aft body contacts have been made. One such proposal, commonly referred to as direct lift control for flight path control, is to provide a closed loop control law which uncouples flight path control from a pitch attitude control. Uncoupling flight path control from attitude control allows changes in flight path angle to be made with little or no change in pitch attitude. Flight path is controlled by modulating wing control surfaces and flaps, not by modifying pitch attitude.

While the direct lift control proposal has some advantages, it has substantial drawbacks. Because the direct lift control technique uncouples flight path control from pitch attitude control, in contrast to the flight control systems of virtually all conventional large commercial transport airplanes, direct lift control would cause airplane handling characteristics unfamiliar to commercial pilots. This proposal would likely require that commercial pilots undergo additional training to learn the different handling characteristics of airplane incorporating direct lift control. Aside from unconventional maneuvering characteristics, direct lift control also poses logistical difficulties. The implementation of direct lift control would necessitate complex system changes to ensure acceptable pilot and flight control system interaction. Furthermore, the use of spoilers, which are often utilized by the direct lift control, could result in unacceptable air frame buffeting, unduly compromising passenger comfort."

".....the invention provides an airplane landing attitude modifier (LAM) that improves nose gear contact margins and/or aft body contact margins. The improved margins result from the automatic, symmetric variation of movable aircraft surfaces and/or high lift surfaces, including, for example, the flaperons. Because the LAM can provide an increased aft body contact margin, the LAM obviates the need for aft body tail skids intended to protect against aft body contacts. Thus, the added weight, degradation in structural clearance, and economic expense associated with aft body tail skids are avoided. Furthermore, because the LAM can improve both the nose gear contact margin and aft body contact margin of an airplane, the limitations associated with the conventional techniques of merely adjusting landing approach speeds, trailing edge flap deflections at the landing flap detents, and lateral control surface symmetric droop are avoided. By allowing improved contact margins at both extreme ends of an airplane's landing pitch attitude envelope, the LAM overcomes the limitations of these adjustments which merely improve aft body contact margin at the expense of the nose gear contact margin or vice versa. Because the LAM does not artificially limit the available pitch attitude for an airplane, in contrast to some conventional pitch limiting methods, the absolute control of the airplane is retained by the pilot.

The LAM 10 positions the flaperons of an airplane to improve the nose gear contact margin and the aft body contact margin during an airplane's landing. The LAM 10 symmetrically adjusts the flaperon droop from the nominal position in response to the difference between an airplane's current approach condition and reference approach condition. The adjustment provides a decreased pitch attitude variation for the airplane's landings. Although the preferred embodiment causes adjustment of the flaperons of an airplane, it is to be understood that the LAM 10 could also be applied to symmetrically adjust other lift generating movable surfaces or combinations of lift generating movable surfaces on an airplane as well."

Last edited by JammedStab; 4th Apr 2018 at 09:23.
JammedStab is offline