Go Back  PPRuNe Forums > Flight Deck Forums > Tech Log
Reload this Page >

CofG and induced drag

Tech Log The very best in practical technical discussion on the web

CofG and induced drag

Old 13th Jan 2009, 07:42
  #1 (permalink)  
Thread Starter
 
Join Date: Apr 2003
Location: Australia
Posts: 261
Likes: 0
Received 0 Likes on 0 Posts
CofG and induced drag

Can someone please explain why an aircraft flying at it's forward CofG limit has more induced drag than an aircraft flying at it's rear CofG limit?

Thanks in advance.
Soulman is offline  
Old 13th Jan 2009, 08:00
  #2 (permalink)  
 
Join Date: May 2006
Location: Londonish
Posts: 779
Likes: 0
Received 0 Likes on 0 Posts
Simply put, in most 'normal' cases, the tailfeathers are supplying a *downward* force to keep everything straight and level.

The further forward the COG, the more downward force is required, plus a little extra from the mainplane to keep the whole affair at the same altitude, thus more induced drag.
Mark1234 is offline  
Old 13th Jan 2009, 08:34
  #3 (permalink)  
Gender Faculty Specialist
 
Join Date: Mar 2002
Location: Stop being so stupid, it's Sean's turn
Posts: 1,870
Received 3 Likes on 2 Posts
And an aft C of G will also reduce your stall speed and vice versa.
Chesty Morgan is offline  
Old 13th Jan 2009, 11:41
  #4 (permalink)  
 
Join Date: Sep 2006
Location: Spain
Age: 34
Posts: 313
Likes: 0
Received 0 Likes on 0 Posts
An aft Center of Gravity will also reduce the static directional stability..
Mohit_C is offline  
Old 13th Jan 2009, 12:42
  #5 (permalink)  
 
Join Date: Nov 2006
Location: SoCalif
Posts: 896
Likes: 0
Received 0 Likes on 0 Posts
Is that induced drag, or parasitic drag?

Induced drag is fixed, regardless of speed, correct?

GB
Graybeard is offline  
Old 13th Jan 2009, 13:49
  #6 (permalink)  
 
Join Date: Feb 2003
Location: Brighton
Posts: 961
Received 5 Likes on 5 Posts
"Induced drag is fixed, regardless of speed, correct?

GB"

Well, no.

Induced drag is the drag produced as a consequence of generating lift. It is inversely proportional to speed squared - i.e. it is very large at low speeds and a lower proportion of total drag at high speeds. The subject has been addressed here many times. Try a search and ye shall find.
kenparry is offline  
Old 13th Jan 2009, 14:15
  #7 (permalink)  
 
Join Date: Feb 2005
Location: flyover country USA
Age: 82
Posts: 4,579
Likes: 0
Received 0 Likes on 0 Posts
Wikipedia's explanation of induced drag is not bad.
barit1 is offline  
Old 14th Jan 2009, 07:17
  #8 (permalink)  
 
Join Date: Dec 2001
Location: England
Posts: 1,389
Likes: 0
Received 0 Likes on 0 Posts
As well as the four forces lift, drag, thrust and weight there are also several torques acting on an aircraft that must be in balance to stop it pitching up/down. These act about the centre of gravity.

a) The Wing produces a nose down torque (A "pitching moment" not shown below).
b) The center of pressure isn't exactly on the CoG so that also produces a pitch down.
c) The tail produces a pitch up.

These must sum to zero or the aircraft rotates about the CoG. It's why a tail is needed in the first place.

Altering the CoG position effects b) so c) must be adjusted to compensate. As others have said the further aft the CoG the less downforce the tail must produce. The further forward the more down force the tail must produces and the more lift the wing must produce to keep overall lift and weight in balance. Increased lift = increased drag.




On a canard (tail first aircraft) the foreplane ADDS to the overall lift produced..

cwatters is offline  
Old 14th Jan 2009, 17:10
  #9 (permalink)  
 
Join Date: Sep 1998
Location: wherever
Age: 54
Posts: 1,616
Likes: 0
Received 0 Likes on 0 Posts
I think your duck needs trimming mate!!
FE Hoppy is offline  
Old 14th Jan 2009, 18:12
  #10 (permalink)  
airfoilmod
Guest
 
Posts: n/a
So sky captain that would mean

That, at cruise, if I could shift the cg back toward the tail, the tail would have to produce a net "upforce" to balance (trim) the a/c? With the tail doing that, it would have to create more lift, correct? More drag also, but, the net effect with a loaded tail is a reduction in the wing's angle of attack? Thought so. So to reduce net a/c drag I could ask the tail to help lift, and save Fuel? Thought so.

AF
 
Old 14th Jan 2009, 19:11
  #11 (permalink)  
 
Join Date: Feb 2003
Location: Brighton
Posts: 961
Received 5 Likes on 5 Posts
airfoilmod:

If it was that simple, then of course Boeing and Airbus and uncle Tom Cobley and all would have done it years ago. The flaw in your idea is that with the C of G so far aft the aircraft would be unstable in pitch to the extent that it would be unflyable without an autostab. That device would be critical to the safety of the flight regime, so it would need at least triple redundancy...................... and so we go on.
kenparry is offline  
Old 14th Jan 2009, 19:11
  #12 (permalink)  
 
Join Date: May 2000
Location: Seattle
Posts: 3,195
Likes: 0
Received 0 Likes on 0 Posts
That MIGHT work if you have fly-by-wire controls that can deal with a marginally stable or unstable airplane. Load the airplane to the most aft allowed CG, but no further aft.
Intruder is offline  
Old 14th Jan 2009, 23:15
  #13 (permalink)  
 
Join Date: Sep 1998
Location: wherever
Age: 54
Posts: 1,616
Likes: 0
Received 0 Likes on 0 Posts
As long as the CG is ahead of the neutral point then you still have positive stability. The neutral point is not the centre of lift of the main plane but of the entire aircraft.

Of course the amount of stability required is set by the certification standard so military aircraft can be designed with neutral or negative stability and use FBW systems to make them flyable by a mere mortal pilot. He does get the option of a martin baker arrival though in case the systems fail.
FE Hoppy is offline  
Old 15th Jan 2009, 01:47
  #14 (permalink)  
airfoilmod
Guest
 
Posts: n/a
Don't try this at home.

FE Hoppy, you are on the money. Any dynamic balanced mass will tend to follow an existing path, the problem is control input, rate of change and lateral stability. An x plane @ Edwards flew with ailerons on the leading edges of the wings. No mortal, (and few current computers) could keep up with Delta roll. There is nothing untoward about shifting the cg aft (generally by adjusting fuel use) and pushing ND trim to add lift and drag to the tailplane, lowering the AOA of the a/c and its overall induced drag, which saves aforementioned fuel.
 
Old 15th Jan 2009, 15:07
  #15 (permalink)  
 
Join Date: Aug 2005
Location: Estonia
Posts: 834
Likes: 0
Received 0 Likes on 0 Posts
Look at it this way: the drag is at its minimum when both main wing and horizontal stabilizer have exact same AoA which is the best L/D AoA for both. But this has neutral stability: if you pitch up from best L/D AoA to stall AoA, both wings reach stall AoA at the same time and the plane mushes down without dropping nose and recovering from stall. A plane is stable when the rear wing has lower AoA: when the forward wing stalls and drops, the rear wing is not yet stalled and so the nose drops. If the rear wing has higher AoA then the plane is negatively stable, and the rear wing stalls first, dropping the tail and pushing the front wing into stall.

The way to get positive stability is to get the CoG ahead of its rear limit (where the stability is neutral) so that the front wing carries more of the weight and rear wing carries less or actually pushes down - but since the wings are not at their best L/D AoA then, this adds drag.
chornedsnorkack is offline  
Old 16th Jan 2009, 20:50
  #16 (permalink)  
airfoilmod
Guest
 
Posts: n/a
sky captain

Long moment arm, lighter stick. Not heavier. With the cg closer to the tail, and a short moment arm, the stick force is increased, (reversed), making the a/c theoretically more frisky in Pitch. (It is).
 
Old 17th Jan 2009, 04:20
  #17 (permalink)  
 
Join Date: Aug 2003
Location: Sale, Australia
Age: 80
Posts: 3,832
Likes: 0
Received 0 Likes on 0 Posts
Long moment arm, lighter stick. Not heavier. With the cg closer to the tail, and a short moment arm, the stick force is increased
Other way about. Stick force per "G" reduces as the C of G moves aft, which is what makes for the frisky and exciting times - if not your death.
Brian Abraham is offline  
Old 17th Jan 2009, 07:09
  #18 (permalink)  
airfoilmod
Guest
 
Posts: n/a
Brian

the greater the distance between the elevators and cg, the less energy it takes to change pitch, advantage empennage. The shorter the distance, the more energy it takes to change pitch. However, with aft cg, it isn't changing altitude (climbing), instead it is loading the airframe, mushing. The difference is in the available "weight" of the a/c closer to the tail, which "aids" the pitch up. Specifically, loading the tail, depriving the a/c of lateral stability. A more correct cg loads the wings. Instead of "trimming the airframe", the tail carries load as the center of lift is moved aft, producing the instability. I'm sticking with that. (As cg inches aft, "balancing" pitch forces is more difficult. The a/c is easy to pitch up, more difficult to lower the nose, etc.) AF

Last edited by airfoilmod; 17th Jan 2009 at 07:28.
 
Old 17th Jan 2009, 12:52
  #19 (permalink)  
 
Join Date: May 2006
Location: Londonish
Posts: 779
Likes: 0
Received 0 Likes on 0 Posts
You're both right (sortof). You're talking about different moment arms!

I believe what sky captain meant is that with a forward COG there is a long(er) moment arm between the COP and the COG, so the stick force is higher to keep everything in balance (the length of the empenage not generally being variable).

Back to my original post, while it's *possible* for there to be download on the tail, in the general, conventional, non-canard civilian aeroplane, it's pretty much guaranteed that there will be an upload. Yes, the aeroplane COP is behind the main wing COP, but the COG's rarely allowed that close that it really matters.
Mark1234 is offline  
Old 17th Jan 2009, 13:45
  #20 (permalink)  
airfoilmod
Guest
 
Posts: n/a
Mark

Stick force (Pitch) simply put, describes the authority required to rotate the mass around its cg. Brian mentions "G" and pitch force lessening as cg moves aft. It 's true, if one wants to pitch up. It is increasingly more difficult to Pitch the nose down as cg travels aft. The reason is clear: with more weight (Inertia) near the Tail, the elevators must perform more work to resist gravity. Do I miss your point?

Addressing the original question? An unaccelerated a/c flies straight and level with all forces balanced (cwatters). Let's try to reduce drag. Assuming the cg is at a point that allows aft movement, and any change isn't other than benign, move the cg aft some small amount. To compensate for the resultant Pitch up (and increase in AoA) lets trim the tail (elevators) and bring the nose back down. We will note with satisfaction that the added drag of the trim (increased lift @ tail), has reduced the AoA of the Wings. This slight reduction in OVERALL drag is the payoff in lower fuel burn rate.

If we have gotten too enthusiastic with aft cg, eventually the elevators will be unable to keep the nose down, and that's the final outcome. The picture is clearer with a discussion of tailless a/c, and how challenging flying that critter is.
 

Thread Tools
Search this Thread

Contact Us - Archive - Advertising - Cookie Policy - Privacy Statement - Terms of Service

Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.