Go Back  PPRuNe Forums > Flight Deck Forums > Rumours & News
Reload this Page >

Ethiopian airliner down in Africa

Wikiposts
Search
Rumours & News Reporting Points that may affect our jobs or lives as professional pilots. Also, items that may be of interest to professional pilots.

Ethiopian airliner down in Africa

Thread Tools
 
Search this Thread
 
Old 18th Mar 2019, 20:19
  #1981 (permalink)  
 
Join Date: Jan 2008
Location: farmm intersection, our ranch
Age: 57
Posts: 206
Likes: 0
Received 0 Likes on 0 Posts
How many of you know what the stab trim range is in normal flight on your type. Might be a good time to pay attention to where your most powerful flight control spends most of its time. I know for our ops, the 800NG lives between 5 and 6 just about all of the time.

If the jet is doing something you don't want with a flight control, do something about it. I would call it a runaway, you can call it what you want. Yes, the trim moves a lot when hand flying, but it never moves enough to need substantial column input to counter it.
flyingchanges is offline  
Old 18th Mar 2019, 20:29
  #1982 (permalink)  
 
Join Date: Feb 2009
Location: Seattle
Posts: 379
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by dozing4dollars


In other aircraft the elevator has a dynamic limiter. The Q limiter. Q is the airodynamic force. This is a combination of airspeed and density altitude. The same as the force sensed by the pitot tube. The purpose of the Q limiter is to limit the maximum elevator angle. At lower Q the pilot has full authority over the elevator but as Q increases, the angle is limited.

In ithe scenario where an aircraft is low and fast the elevator deflection available is limited. It should be noted that elevator deflection is based on deflection from the trimmed position of the stabilizer.
Got it, thanks for expanding. What I was wanting to know was if you were pointing to an explicit command limit within the control system that would keep from asking more of the elevator actuators than they can deliver vs. a system that asks for everything that is available and takes what it gets when elevator actuators are driven with full available hydraulic pressure. I am familiar with both types of systems. In the case of the 737 the limit is hydro-mechanical in that the elevator actuator control valves are wide open but the elevator hinge moment is more than the actuators can deliver so the surface ends up at a less than full travel position. I am familiar with this being referred to as either "blowdown" or "blowback". Note that if you are flying with high enough dynamic pressure for that to be the limiting factor and you command full elevator with full column and you hold that column and you speed up, the elevator deflection will decrease as dynamic pressure increases. With reference to Star Trek, that's when Scotty says "She's give'n you all there is, there just isn't any more to be had." Glad to provide this answer once I was certain of your question.

Last edited by FCeng84; 18th Mar 2019 at 20:36. Reason: typo
FCeng84 is offline  
Old 18th Mar 2019, 20:32
  #1983 (permalink)  
 
Join Date: Aug 2018
Location: Madrid
Posts: 21
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by FCeng84
Need for MCAS is not related the thrust pitch coupling. Read previous thread entries to understand and catch up with the discussion.
I know the requirement for MCAS is to have linear alpha forces on the column as it approaches high AOA, as required by certification, due to the new lift generated by the engine nacelles not previously found in previous NG models.

I was trying to explain pitch-thrust coupling.
jagema is offline  
Old 18th Mar 2019, 20:33
  #1984 (permalink)  
 
Join Date: Nov 2007
Location: dublin
Posts: 2
Likes: 0
Received 0 Likes on 0 Posts
Hi guys
A few points being missed here I think so far. Now some of these are of course just opinion but here goes.....
1 the 737 can fly with everything turned off. It’s a mechanical plane. That is it’s great virtue. So to crash one you have to forget that it’s actually a real ordinary plane and you are meant to be in total control! Always.
2 that being so, if STAB moves unexpectedly, turn off STAB SWITCHES as generations of pilots have done ,and fly straight and level. Why not take control of the plane? You can.
3 MACS only works with autopilot out at high AoA slow speed
4 the fact MACS malfunctions or maybe is not we’ll designed which we don’t know yet, is not the cause of the crash. although it would be desirable if it worked in a sensible manner. Eg two AoA inputs, doesn’t repeatedly incrementally trim nose down and a limit on the number of trim wheel turns etc etc as postulated here.
5 this nose down trim goes back to the 707 which had a stick pusher- it’s not really a new idea at all
6 the cause here? Looks to me like we’re forgetting the basics and the accumulated knowledge of 50 years of operating the 737.
as someone said, the MAX is like a cart (or perhaps a 707)with a couple of computers and glass screens, but underneath it’s a very simple uncomplicated plane. Fly it 6/60 and it will fly. 6 deg nose up. 60% power. Like any other plane.
7 the stabilizer trim switches on the yoke-the ones you use all the time, cannot apparently override (apply automatic brake) against MACS. Now- That’s something very different from the previous models and if true an important issue. But not the cause.
Thats my ten pence worth for today
i would fly a Max in a heartbeat. Provided the pilots
yanrair is offline  
Old 18th Mar 2019, 20:35
  #1985 (permalink)  
 
Join Date: Feb 2009
Location: Seattle
Posts: 379
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by flyingchanges
How many of you know what the stab trim range is in normal flight on your type. Might be a good time to pay attention to where your most powerful flight control spends most of its time. I know for our ops, the 800NG lives between 5 and 6 just about all of the time.

If the jet is doing something you don't want with a flight control, do something about it. I would call it a runaway, you can call it what you want. Yes, the trim moves a lot when hand flying, but it never moves enough to need substantial column input to counter it.
Music to my engineer ears! Let me add that the 737 automatic stabilizer control should never drive your airplane away from trim if you are flying at a steady speed and an AOA well below stick shaker. If it does, take note. Speaking of stick shaker, when that is going on a 737 MAX and the flaps are up and the autopilot is disengaged MCAS is most likely active. MCAS can activate with indicated AOA less than stick shaker, but it has to be close and must be above the AOA for any normal trim condition.
FCeng84 is offline  
Old 18th Mar 2019, 20:39
  #1986 (permalink)  
 
Join Date: Feb 2009
Location: Seattle
Posts: 379
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by jagema
I know the requirement for MCAS is to have linear alpha forces on the column as it approaches high AOA, as required by certification, due to the new lift generated by the engine nacelles not previously found in previous NG models.

I was trying to explain pitch-thrust coupling.
Great and peace. We just need to be careful in an MCAS focused discussion not to give the impression that the 737 MAX engine issue that gives rise to the need for MCAS is thrust pitch coupling. Glad that we are of the same understanding here.
FCeng84 is offline  
Old 18th Mar 2019, 20:40
  #1987 (permalink)  
 
Join Date: May 2008
Location: El Paso, Texas
Age: 72
Posts: 29
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by FCeng84
Got it, thanks for expanding. What I was wanting to know if you were pointing to an explicit command limit within the control system that would keep from asking more of the elevator actuators than they can deliver vs. a system that asks for everything that is available and takes what it gets when elevator actuators are driven with full available hydraulic pressure. I am familiar with both types of systems. In the case of the 737 the limit is hydro-mechanical in that the elevator actuator control valves are wide open but the elevator hinge moment is more than the actuators can deliver so the surface ends up at a less than full travel position. I am familiar with this being referred to as either "blowdown" or "blowback". Note that if you are flying with high enough dynamic pressure for that to be the limiting factor and you command full elevator with full column and you hold that column and you speed up, the elevator deflection will decrease as dynamic pressure increases. With reference to Star Trek, that's when Scotty says "She's give'n you all there is, there just isn't any more to be had." Glad to provide this answer once I was certain of your question.

This question is for FCeng84 who seems to be very specifically knowledgeable regarding the 737Max. Based upon what you are saying about how the elevator works, it does not seem that there would be a situation that would, either through control force, aerodynamic force or a combination thereof, preclude manual trimming of the stabilizer. True?
abdunbar is offline  
Old 18th Mar 2019, 20:43
  #1988 (permalink)  
 
Join Date: Aug 2018
Location: Madrid
Posts: 21
Likes: 0
Received 0 Likes on 0 Posts
Smile

Originally Posted by FCeng84
Glad that we are of the same understanding here.
A lot of it has to do with your clear and insightful contributions to this thread. As a 737NG driver I thank you bud.
jagema is offline  
Old 18th Mar 2019, 20:51
  #1989 (permalink)  
 
Join Date: Feb 2009
Location: Seattle
Posts: 379
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by yanrair
Hi guys
A few points being missed here I think so far. Now some of these are of course just opinion but here goes.....
1 the 737 can fly with everything turned off. It’s a mechanical plane. That is it’s great virtue. So to crash one you have to forget that it’s actually a real ordinary plane and you are meant to be in total control! Always.
2 that being so, if STAB moves unexpectedly, turn off STAB SWITCHES as generations of pilots have done ,and fly straight and level. Why not take control of the plane? You can.
3 MACS only works with autopilot out at high AoA slow speed
4 the fact MACS malfunctions or maybe is not we’ll designed which we don’t know yet, is not the cause of the crash. although it would be desirable if it worked in a sensible manner. Eg two AoA inputs, doesn’t repeatedly incrementally trim nose down and a limit on the number of trim wheel turns etc etc as postulated here.
5 this nose down trim goes back to the 707 which had a stick pusher- it’s not really a new idea at all
6 the cause here? Looks to me like we’re forgetting the basics and the accumulated knowledge of 50 years of operating the 737.
as someone said, the MAX is like a cart (or perhaps a 707)with a couple of computers and glass screens, but underneath it’s a very simple uncomplicated plane. Fly it 6/60 and it will fly. 6 deg nose up. 60% power. Like any other plane.
7 the stabilizer trim switches on the yoke-the ones you use all the time, cannot apparently override (apply automatic brake) against MACS. Now- That’s something very different from the previous models and if true an important issue. But not the cause.
Thats my ten pence worth for today
i would fly a Max in a heartbeat. Provided the pilots

A couple of responses to your points:

1. True, but you don't truly get everything turned off until you use the stabilizer cutout switches. Handling qualities are not certifiable in that configuration.

2. Fully agree.

3. MCAS can operate at any Mach number less than 0.84.

4. Fully agree. Hopefully the MCAS update to be fielded soon addresses all that you raise in this point.

5. There is a fundamental difference between a stick pusher and a system that uses stabilizer. The pitch command increment provided by a pusher is gone as soon as you override and move the column where you want it. The increment of stabilizer motion inserted automatically is not removed via the column and takes either returning to low AOA or pilot commanding the trim in the other direction. Running the stabilizer back takes time.

6. Pitch and power per book recommendations - yes!

7. Pilot operated pitch trim switches on the yoke will temporarily override MCAS. If the conditions for MCAS activation persist, it will come back active 5 seconds after the pilot stops trimming. Lion Air pilot demonstrated this for several minutes. The column cutout switches (not available to the pilot, but tripped when the column is far enough out of neutral) do override the legacy STS function, but do not override MCAS when pulling with MCAS commanding airplane nose down stabilizer.

Cheers

Last edited by FCeng84; 18th Mar 2019 at 21:05. Reason: typo
FCeng84 is offline  
Old 18th Mar 2019, 20:58
  #1990 (permalink)  
 
Join Date: Feb 2006
Location: USA
Posts: 487
Likes: 0
Received 0 Likes on 0 Posts
Transport Canada Will Review

Canada re-examining Boeing 737 MAX approval after FAA certification probe

OTTAWA (Reuters) - Transport Canada is re-examining the validation it gave Boeing Co’s 737 MAX jets, following reports of a U.S. probe into the aircraft’s certification by the Federal Aviation Administration (FAA), Canadian Transport Minister Marc Garneau said on Monday.

Garneau told reporters in Ottawa that Transport Canada might not take any action but he thinks it would be wise to re-examine the validation of the 737 MAX 8 jet, which has been grounded worldwide for safety concerns following the recent crash of an Ethiopian plane of that model, which killed 157 people.

The disaster followed a Lion Air crash in Indonesia in October involving the same model plane.

Canada accepted the FAA’s March 2017 certification of the MAX under a deal where such approvals by the United States are accepted by Canada and vice versa.

“We may not change anything but we’ve decided it’s a good idea for us to review the validation of the type certificate that was given for the MAX 8,” he said.

Citing people familiar with the inquiry, the Wall Street Journal reported on Sunday that U.S. Department of Transportation officials were scrutinizing the FAA approval of MAX jets and that a grand jury in Washington subpoenaed at least one person involved in developing the MAX.

In addition, the Seattle Times reported that Boeing’s safety analysis of a new flight control system on MAX jets, known as MCAS, had several crucial flaws, including understating the power of the system.

Garneau said Transport Canada would do its own certification of a software change being prepared by Boeing within the next few weeks “even if it’s certified by the FAA.”

Reporting By David Ljunggren in Ottawa. Writing by Allison Lampert in Montreal; editing by Jonathan Oatis
Zeffy is offline  
Old 18th Mar 2019, 20:59
  #1991 (permalink)  
 
Join Date: Nov 2007
Location: Canada
Posts: 24
Likes: 0
Received 0 Likes on 0 Posts
The most desirable outcome would be where manufacturers could design new aircraft with state of the art materials, engines and avionics instead of using airframes and certifications from the sixties. The cost of entry is so high this inhibites innovation and safety.

Recently a Canadian design that competed with Boeing was blocked by Boeing because it was a competitor. Airbus stepped in to scoop up the newly certified C series and rebrand it an Airbus A220. Not what Boeing wanted.

If the cost of certification is so high and established manufacturers block new entrants the safety and innovation that has been a hallmark of aviation will suffer.

Flying sixties designs with bandaid fixes will be our future and our grandchildrens
dozing4dollars is offline  
Old 18th Mar 2019, 21:04
  #1992 (permalink)  
 
Join Date: Feb 2009
Location: Seattle
Posts: 379
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by abdunbar
This question is for FCeng84 who seems to be very specifically knowledgeable regarding the 737Max. Based upon what you are saying about how the elevator works, it does not seem that there would be a situation that would, either through control force, aerodynamic force or a combination thereof, preclude manual trimming of the stabilizer. True?
You are stretching my 737 knowledge! I have never read or heard anything definitive about whether or not horizontal tail control (either electric or manual via the trim wheel) would be stalled out if the elevator were at blowdown and thus generating maximum force on the jack screw. I would hope that someone on this forum with that knowledge would share it with the rest of us. Not wanting anyone to find out the hard way my recommendation is to keep up with the pitch trim so that the column forces don't build up to the point where you become the one to find out in flight.
FCeng84 is offline  
Old 18th Mar 2019, 21:04
  #1993 (permalink)  
 
Join Date: Jan 2010
Location: Edinburgh
Age: 85
Posts: 74
Likes: 0
Received 16 Likes on 9 Posts
Well, if questions are permitted from professional engineers, here are two dumb questions:-
1. Looking at the altitude plot in post 1869, the clearance from rising terrain at 02.40 is perilously small, but thereafter there is a brisk climb. Could that rate of climb and altitude gain have taken the aircraft into a stall?
2. Eyewitnesses claimed to have seen items falling from the plane whilst it was still airborne. Could these have been contrails/vortices generated by extreme AoAs?
Thank you in anticipation of patient and polite replies.
DType is online now  
Old 18th Mar 2019, 21:10
  #1994 (permalink)  
 
Join Date: Nov 2010
Age: 56
Posts: 953
Received 0 Likes on 0 Posts
Originally Posted by silverstrata


Clearly MCAS is not a runnaway trim condition, otherwise we would be reaching for the cut-out switches every time the speed-trim operated. I think some people here do not realise that the trimmer doing its own thing is operations normal.

And the auro-trim systems are always mis-trimming the aircraft (the trim inputs by the speed-trim system are always wrong, and you always have to re-trim manually). So at what point does ‘operations normal’ become ‘operations abnormal’? At what point do you assume that the trimmer has gone awry..??

Silver
I am going to disagree with you. You are technically correct, but the captain on the Lion aircraft that crashed manually corrected for MCAS input 21 or so times. 21 times there was a 10 second trim input by MCAS, followed by 21 times a 10 second ( I assume pilot electric trim and MCAS trim at the same rate but I can be wrong about that) electric trim input by the captain. I know there were 5 second breaks without trim, but I would have to think this is not even close to normal. Of course they had all sorts of other bells and whistles going off, but the captain was able to keep the aircraft in trim, so he must have known there was a trim issue too. I am on brand A, but I have a few hundred hours in the 737 cockpit as JS/non working crew. I have been paying attention, and have never seen STS doing anything close to a 10 second trim run, and it will generally trim ANU after take-off, as the pilot is trying to accelerate, and STS wants to keep the speed constant, whereas MCAS was continuously AND.
hans brinker is offline  
Old 18th Mar 2019, 21:25
  #1995 (permalink)  
 
Join Date: Nov 2007
Location: Canada
Posts: 24
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by FCeng84
Got it, thanks for expanding. What I was wanting to know was if you were pointing to an explicit command limit within the control system that would keep from asking more of the elevator actuators than they can deliver vs. a system that asks for everything that is available and takes what it gets when elevator actuators are driven with full available hydraulic pressure. I am familiar with both types of systems. In the case of the 737 the limit is hydro-mechanical in that the elevator actuator control valves are wide open but the elevator hinge moment is more than the actuators can deliver so the surface ends up at a less than full travel position. I am familiar with this being referred to as either "blowdown" or "blowback". Note that if you are flying with high enough dynamic pressure for that to be the limiting factor and you command full elevator with full column and you hold that column and you speed up, the elevator deflection will decrease as dynamic pressure increases. With reference to Star Trek, that's when Scotty says "She's give'n you all there is, there just isn't any more to be had." Glad to provide this answer once I was certain of your question.
The Q limiter was pure mechanical and it limited rudder (DC-9). Same vintage as original B737. I don’t know what the MAX or NG has but I believe all modern jet transport aircraft limit fight controls as Q increases as well as Mach.

My point.... and I do have one.... is that the elevator may have increasingly limited authority as the aircraft AS increased.
dozing4dollars is offline  
Old 18th Mar 2019, 21:39
  #1996 (permalink)  
 
Join Date: Dec 2010
Location: Perth, WESTERN AUSTRALIA
Age: 71
Posts: 889
Received 19 Likes on 12 Posts
Originally Posted by dozing4dollars
The USA government shutdown that both political parties participated in was also a factor.

... and hence, the voters like you
I don't remember Indonesians or Ethiopians getting a vote!

WingNut60 is offline  
Old 18th Mar 2019, 21:43
  #1997 (permalink)  
 
Join Date: Feb 2009
Location: Seattle
Posts: 379
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by dozing4dollars


The Q limiter was pure mechanical and it limited rudder (DC-9). Same vintage as original B737. I don’t know what the MAX or NG has but I believe all modern jet transport aircraft limit fight controls as Q increases as well as Mach.

My point.... and I do have one.... is that the elevator may have increasingly limited authority as the aircraft AS increased.
Let me give two examples:

On 737 the maximum elevator displacement with full column input is either full travel if the elevator actuators are physically capable of pushing the elevators hard enough to get there or where ever the aerodynamic hinge moment balances out against full elevator actuator force capability. In both cases, the control system is trying to move the elevator as far as is physically possible but in high dynamic pressure case it has reached an actuator force limit.

On 787 the maximum elevator displacement with full column input is limited by a control system command limit schedule that is a function of flight condition. (I am simplifying here by ignoring for this discussion any envelope protection functions.) The elevator actuators may be capable of generating more force than required to get the surfaces to the command limits, but they are not allowed to. At low speeds the command limits are such that full elevator travel is achievable. At higher speeds control law limits are chosen to balance between (on the low end) elevator displacement needed to achieve pitch control power to meet maneuver requirements and (on the high end) deflections that would generate higher structural loads than necessary. This scheme allows the elevator limits to be tailored to provide the pitch control power needed, but no more so that the structure can be optimized for minimum weight. This is one of the ways in which FBW control is able to deliver improved performance.

The story is always a little more complicated than one might at first think.
FCeng84 is offline  
Old 18th Mar 2019, 22:20
  #1998 (permalink)  
 
Join Date: May 2016
Location: Nantes
Posts: 63
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by Sailvi767


Bingo, you are reducing the effectiveness of the miss trimmed stab and increasing elevator effectiveness.
Reducing the speed (or not letting it grow) is an obvious remedy but easier to say afterwards. If they have the stick shaker since the take-off, with a normal airspeed, they may think the fault is on airspeed and apply the procedure to keep N1 at a relatively high value that will accelerate the aircraft beyond controlability limits...
deltafox44 is offline  
Old 18th Mar 2019, 22:48
  #1999 (permalink)  
 
Join Date: May 2016
Location: Nantes
Posts: 63
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by FCeng84
Let me give two examples:

On 737 the maximum elevator displacement with full column input is either full travel if the elevator actuators are physically capable of pushing the elevators hard enough to get there or where ever the aerodynamic hinge moment balances out against full elevator actuator force capability. In both cases, the control system is trying to move the elevator as far as is physically possible but in high dynamic pressure case it has reached an actuator force limit.

On 787 the maximum elevator displacement with full column input is limited by a control system command limit schedule that is a function of flight condition. (I am simplifying here by ignoring for this discussion any envelope protection functions.) The elevator actuators may be capable of generating more force than required to get the surfaces to the command limits, but they are not allowed to. At low speeds the command limits are such that full elevator travel is achievable. At higher speeds control law limits are chosen to balance between (on the low end) elevator displacement needed to achieve pitch control power to meet maneuver requirements and (on the high end) deflections that would generate higher structural loads than necessary. This scheme allows the elevator limits to be tailored to provide the pitch control power needed, but no more so that the structure can be optimized for minimum weight. This is one of the ways in which FBW control is able to deliver improved performance.

The story is always a little more complicated than one might at first think.
Also, 787 do not need any MCAS

Instead of a 737 MAX Boeing should have built a 787 MIN
deltafox44 is offline  
Old 18th Mar 2019, 23:15
  #2000 (permalink)  
 
Join Date: Feb 2009
Location: Seattle
Posts: 379
Likes: 0
Received 0 Likes on 0 Posts
Originally Posted by deltafox44
Reducing the speed (or not letting it grow) is an obvious remedy but easier to say afterwards. If they have the stick shaker since the take-off, with a normal airspeed, they may think the fault is on airspeed and apply the procedure to keep N1 at a relatively high value that will accelerate the aircraft beyond controlability limits...
Keep trimming and if the system continuously trims you nose down as you are accelerating know that is the opposite direction of STS and thus incorrect => shut the stabilizer down. First and foremost keep trimming to keep the column forces from building up. The problem of getting progressively more out of time takes 10s of seconds to build up and will stop if you keep trimming. If MCAS decides it is time to put in 10 seconds of nose down trim and you determine after a couple of seconds that it is doing the wrong thing and add your own nose up trim, MCAS will stop until you have been off of the trim for 5 continuous seconds. If all you do is blip the trim once every 5 seconds MCAS won't do anything even if the AOA it is getting is out of whack high! Eventually it is hoped that the crew will decide that the automatic stabilizer is doing far more harm than good and turn if off via the cutout switches.

Oh - did I mention enough times that you should keep trimming?!

I'm not trying to argue that MCAS as currently design is satisfactory, but with the system knowledge that we had before the end of 2018 I was confident that we had an acceptable workaround until improvements could be brought to the fleet.

If it turns out the the Ethiopian accident was the result of the same issues that led to the Lion Air accident our industry has some major soul searching to do.

MCAS appears to have been designed based on three assumptions that I have suggested before:
1. If a pilot trims column force will be trimmed to or near zero.
2. Having the automatic stabilizer control continuously take the airplane away from trim when otherwise flying a relatively steady condition, pilots will recognize that it is not healthy and would shut it down via the stabilizer cutout switches.
3. An errant AOA signal feeding MCAS would be acceptable because of (1) and (2) above.
Lion Air showed us that for the crew the day before the accident assumptions (1) and (2) above were reasonable so when (3) happened they were able to fly home.
- In fact they elected to go on to their destination with the stick shaker rattling the whole way!
Lion Air further showed us that for the pilot on the accident flight assumption (1) above held. He made more than 20 corrections and was able to maintain his apparent target altitude of 5000 feet reasonably well. He did not get to (2) above, but might have had his partner been able to keep up with (1) after transferring control.
The Lion Air accident clearly showed that neither assumption (1) nor (2) held true for the second pilot and thus control was lost as a result of not meeting assumption (3).

737MAX was permitted to continue flying after the data from the Lion Air accident revealed the facts outlined above, through so many PPRUNE pages, and across so many other information outlets including FAA and Boeing communications because an assumption was made that with increased awareness pilots would be able to live up to assumptions (1), (2), and (3) above. I would like to think that most of the pilots flying 737MAX airplanes in February were prepared to live up to these assumptions. If the recently decoded FDR from the Ethiopian accident shows that to be a repeat of the Lion Air event this latest assumption will clearly not have been valid for at least one 737MAX crew.

While the MCAS software update developed after the Lion Air accident that is almost ready to go to the fleet will likely remove reliance on the three MCAS design assumptions listed above and thus would have greatly improved the likelihood of a safe outcome for the Ethiopian event we are left with a huge elephant in the room. After making the planned update we still must address the following:
A. How many other key points in the 737MAX safety story are based on pilot response assumptions that may not be valid?
B. How about other airplane models? Are they deemed safe based on faulty assumptions regarding pilot action?
- For instance, how may current 737 crews (all models) would not respond quickly enough to a classic stabilizer runaway that was not arrested by column cutout (i.e., pulling the column far enough)? I know this is covered in simulator sessions for 737 pilots, but is that enough?
C. Moving forward with the current status and future of commercial aviation have we gotten to the point where basic flying skills and system awareness are so low that we are at risk throughout the whole industry?
D. Can current and future pilot reaction short falls be addressed through training? If so, what kind, how much, and how often?
E. How will we know that we have achieved a sufficient industry wide level of safety?

Hoping to see FDR data from the Ethiopian accident soon. I sure hope someone from the PPRUNE community will find a way to get ahold of it and share it here.

Last edited by FCeng84; 19th Mar 2019 at 20:48. Reason: typos
FCeng84 is offline  


Contact Us - Archive - Advertising - Cookie Policy - Privacy Statement - Terms of Service

Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.