PDA

View Full Version : Why are jet engines more effective higher ?


+TS
5th Nov 2000, 13:43
Could anyone explain why the efficiency is higher at a higher altitude.
Can we develop a jetengine who is efficient at lower levels ?

WOK
5th Nov 2000, 16:06
Simplistic answer:

Jets don't like being throttled back, i.e. they are most efficient at approx 100% design rpm.

At low level 100% rpm produces way too much thrust, fine for take off, too much to crz without pulling wings off. (Higher mass flow of air means higher mass flow of fuel)

As alt increased, amount of thrust goes down until you don't have to throttle back too much to crz comfortably so engine more efficient. (Mainly due to optimised gas flows internally).

So - higher means engine operates nearer optimal regime.

Of course there are other advantages - increased TAS being the obvious one. The optimum level is a compromise between what the airframe likes and what the engine likes.

If you want a jet a/c optimised for low level build it so it requires four engines to take off, then shut two down once you're airborne. (I believe that's what the RAF do with Nimrods if loitering low level for long periods)

addinfurnightem
5th Nov 2000, 18:14
Anything will work better the further away from the BeanCounters it can get. QED.

The Zombie
5th Nov 2000, 19:45
Because it is designed to be so !
Simple really.........

Mark 1
6th Nov 2000, 13:45
While its true that engine components are designed to optimize their efficiency for the cruise condition to give best overall SFC, SAR etc. The over-riding reason that the efficiency is best at altitude is down to the fact that the cycle efficiency for gas turbines is a function of overall temperature ratio.
Maximum cycle temperature is fixed by HP turbine and NGV material and cooling limits, but the minimum is governed by ambient temperature and thus altitude (upto the tropopause at least).
So High Altitude = High Temperature Ratio

bizjet pilot
7th Nov 2000, 19:55
Conclusion.

If you're higher, you can run the engine hotter. If the engine runs hotter, it produces more thrust for a given liter of kerosene. So it goes either faster or farther, all else being equal.

Of course jet engines are, inconveniently for this explanation, bolted to airframes, and airframes have wings. The altitude best for the wing isn't usually the altitude best for the engine. But we'll let that one go.

wok4CX
8th Nov 2000, 15:05
just dropped by,

Environment
more effecient
better performance
better SFC

cheers.

w4CX

nose-cabin
8th Nov 2000, 15:14
It is easier and with less turbine penalty
to compress 14:1 at rarefied atmosphere than at sea level.

Mark 1
8th Nov 2000, 18:10
Maybe I didn't explain it well enough before.

Cold air requires less work energy to compress a given mass than hotter air.

Because it is colder, you can put more heat energy into it without melting the HP turbine.

Because of the lower compressor requirement, less turbine work and expansion is required to power the compressor.

Hence proportionally more gas energy is available to turn the fan or expand through the primary nozzle (= greater thrust per weight of fuel = efficiency)

nose-cabin
9th Nov 2000, 10:28
What if isothermal above the troposphere?
The temp is constant but optium alt is above this level. Hence temperature is not the only
reason.

411A
9th Nov 2000, 11:05
Lower air density and higher thermal efficiency at higher altitudes and, for a turbojet (rather than turbofan) it is even better.